Neurochemistry international
-
We investigated the effect of 5-HT receptor antagonists on mechanical hyperalgesia observed in a neuropathic pain rat model prepared by chronic constriction injury of the sciatic nerve. NAN-190, a 5-HT 1A receptor antagonist, (-)-pindolol, a 5-HT 1A/1B receptor antagonist, and tropisetron, a 5-HT(3/4) receptor antagonist, did not affect the pain threshold in the hyperalgesic hind limb to the same extent as in the normal hind limb. However, sarpogrelate and ketanserin, 5-HT 2A receptor antagonists, significantly elevated the pain threshold in the hyperalgesic hind limb, but not in the normal hind limb. ⋯ Furthermore, the 5-HT 2A receptor specific binding activity of 3H-ketanserin determined for the hyperalgesic hind limb did not differ from that of the normal hind limb. From these results, we propose that the 5-HT 2A receptor in the hyperalgesic hind paw function as an agonist-independent active receptor following constriction of the sciatic nerve, and that sarpogrelate and ketanserin act as inverse agonists of this receptor and suppress its activation. Methysergide may act as a neutral antagonist that blocks the effect of inverse agonists on the 5-HT 2A receptor.
-
According to the astrocyte-neurone-lactate shuttle (ANLS) hypothesis, activated neurones use lactate released by astrocytes as their energy substrate. The hypothesis, based largely on in vitro experiments, postulates that lactate is derived from the uptake by astrocytes of synaptically released glutamate. The time course of changes in lactate, derived from in vivo experiments, is incompatible with the ANLS model. ⋯ This rise in lactate occurs too late to provide energy for neuronal activity. Furthermore, there is no evidence that lactate undergoes local oxidative phosphorylation. In conclusion, under physiological conditions, there is no evidence that lactate is a significant source of energy for activated neurones.
-
In acute liver failure (ALF) patients that have raised increased intracranial pressure (ICP), mortality remains unacceptably high. There has been an explosion in the knowledge about the pathophysiological basis of raised ICP but treatment modalities are limited. Current therapy is aimed at reducing the circulating ammonia levels and attempts to reduce brain swelling which are only moderately effective. ⋯ The application of moderate hypothermia to treat uncontrolled intracranial hypertension seems promising and its exact place will be decided in a large trial being planned in USA and Europe. Early data from studies in an animal model suggests that albumin dialysis is a promising new tool to treat intracranial hypertension in patients with ALF. The recent advance in our understanding of the pathophysiological basis of intracranial hypertension has provided the platform for the discovery of new treatments.
-
Comparative Study
Evidence that 3-hydroxyglutaric acid interacts with NMDA receptors in synaptic plasma membranes from cerebral cortex of young rats.
Neurological symptoms are common in patients with glutaric acidemia type I (GA-I). Although the pathophysiology of this disorder is not yet fully established, 3-hydroxyglutaric acid (3-HGA), which accumulates in affected patients, has recently been demonstrated to be excitotoxic to embryonic chick and neonatal rat neurons probably via NMDA glutamate receptors. In the present study, we investigated the in vitro effects of 3-HGA on the [(3)H]glutamate and [(3)H]MK-801 (dizocilpine) binding to rat synaptic plasma membranes from cerebral cortex of young rats in order to elucidate the interactions of 3-HGA with glutamate receptors and its possible contribution to the in vitro excitotoxic properties of 3-HGA. 3-HGA (10-100 microM) significantly decreased Na(+)-dependent (up to 62%) and Na(+)-independent (up to 30%) [(3)H]glutamate binding to synaptic membranes, reflecting a possible competition between glutamate and 3-HGA for the glutamate transporter and receptor sites, respectively. ⋯ These data indicate that, relatively to glutamate, 3-HGA is a weak agonist of NMDA receptors. Finally, we demonstrated that 3-HGA provoked a significant increase of extracellular calcium uptake by cerebral cortex slices, strengthening therefore, the view that 3-HGA activates NMDA receptors. The present study therefore, demonstrates at the molecular level that 3-HGA modulates glutamatergic neurotransmission and may explain previous findings relating the neurotoxic actions of this organic acid with excitotoxicity.
-
Pentylenetetrazole (PTZ) injection causes seizures in rodents and this is used in several models of epilepsy. In the present study a low dose (20 mg/kg) was injected into rats in order to analyze metabolic disturbances caused by subconvulsive amounts of PTZ. Intraperitoneal injection of PTZ was followed, 30 min later, by injection of [1-(13C)]glucose plus [1,2-(13C)]acetate and 15 min thereafter decapitation. ⋯ This could be deducted from the findings that less [4-(13C)]glutamine, [3,4-(13C)]glutamate and [2-(13C)]aspartate, which are labeled from [1-(13C)]glucose, were detected in this area. Glial metabolism was also changed as evidenced by the decreased pyruvate carboxylation versus pyruvate dehydrogenation ratio both in cerebrum and subcortex. Comparison between convulsive and nonconvulsive doses of PTZ lead to the hypothesis that changes observed in the cerebellum are mainly due to seizures, whereas those in cerebrum and subcortex are coupled to the action of the chemical stimulant.