Neurochemistry international
-
The adult hypothalamo-neurohypophysial system (HNS) undergoes activity-dependent morphological plasticity which modifies astrocytic coverage of its oxytocinergic neurons and their synaptic inputs. Thus, during physiological conditions that enhance central and peripheral release of oxytocin (OT), adjacent somata and dendrites of OT neurons become extensively juxtaposed, without intervening astrocytic processes and receive an increased number of synapses. The morphological changes occur within a few hours and are reversible with termination of stimulation. ⋯ Tenascin-C, on the other hand, possesses adhesive and repulsive properties; it is secreted by HNS astrocytes and occurs in extracellular spaces and on cell surfaces after interaction with appropriate ligands. These molecules have been considered permissive factors for morphological plasticity. However, because of their localization and inherent properties, they may also serve to modulate the extracellular environment and in consequence, synaptic and volume transmission in a system in which the extracellular compartment is constantly being modified.
-
Mitochondria are central to both apoptotic and necrotic cell death, as well as to normal physiological function. Astrocytes are crucial for neuronal metabolic, antioxidant, and trophic support, as well as normal synaptic function. In the setting of stress, such as during cerebral ischemia, astrocyte dysfunction may compromise the ability of neurons to survive. ⋯ Bcl-2 family proteins are the best studied regulators of cell death, especially apoptosis, and mitochondria are a major site of action for these proteins. Although much data supports the role of Bcl-2 family proteins in the regulation of some of these mitochondrial alterations, this remains an area of active investigation. This mini-review summarizes current knowledge regarding mitochondrial control of cell survival and death in astrocytes and the effects of anti-apoptotic Bcl-2 proteins on astrocyte mitochondrial function.
-
Activated spinal glial cells have been strongly implicated in the development and maintenance of persistent pain states following a variety of stimuli including traumatic nerve injury. The present study was conducted to characterize the time course of surface markers indicative of microglial and astrocytic activation at the transcriptional level following an L5 nerve transection that results in behavioral hypersensitivity. Male Sprague-Dawley rats were divided into a normal group, a sham surgery group with an L5 spinal nerve exposure and an L5 spinal nerve transected group. ⋯ Our optimized real-time RT-PCR method was highly sensitive, specific and reproducible at a wide dynamic range. This study demonstrates that peripheral nerve injury induces an early spinal microglial activation that precedes astrocytic activation using mRNA for surface marker expression; the delayed but sustained expression of mRNA coding for GFAP implicates astrocytes in the maintenance phase of persistent pain states. In summary, these data demonstrate a distinct spinal glial response following nerve injury using real-time RT-PCR.
-
Neurochemical alterations of markers related to synaptic function are potential candidates for age-related impairment of brain function and cognition. The process of aging, including brain aging, can be counteracted to some degree by maintaining animals in long-term conditions of caloric restriction, or supplementing their diet with antioxidant substances. ⋯ The same dietary manipulations are also unable to counteract the derangement of the first step of the main biosynthetic pathway for polyamines, putative neuromodulators in the CNS, that occurs in the aged spinal cord. Some age-related alterations in the expression of different subunits of the NMDA-type glutamate receptors in some CNS regions of aged rats were instead, at least in some cases, counteracted by long-term dietary manipulation.
-
The present study shows that anoxic neuronal depolarization or NMDA receptor activation are potent stimuli for inducing spinal neuronal heat shock protein 70 (Hsp70). Spinal hyperthermia, despite its significant glutamate releasing effect, induced only glial Hsp70 upregulation. No significant increase in spinal Hsp70 expression after potassium depolarization was seen. ⋯ The intervening biochemistry of this protection has been attributed to a family of molecules referred to as HSP. In the present study, we demonstrate that short-lasting anoxic depolarization or activation of NMDA receptor are the most potent stimuli for spinal neuronal Hsp70 induction. This effect corresponds with the observed ischemic tolerance state induced by short-lasting preconditioning spinal ischemia.