Neurochemistry international
-
In acute neuronal insult events, such as stroke, traumatic brain injury, and spinal cord injury, pathological processes of secondary neuronal injury play a key role in the severity of insult and clinical prognosis. Along with nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2S) is regarded as the third gasotransmitter and endogenous neuromodulator and plays multiple roles in the central nervous system under physiological and pathological states, especially in secondary neuronal injury. The endogenous level of H2S in the brain is significantly higher than that in peripheral tissues, and is mainly formed by cystathionine β-synthase (CBS) in astrocytes and released in response to neuronal excitation. ⋯ However, there are still some reports suggest that H2S elevates neuronal Ca(2+) concentration and may contribute to the formation of calcium overload in secondary neuronal injury. H2S also elicits calcium waves in primary cultures of astrocytes and may mediate signals between neurons and glia. Consequently, further exploration of the molecular mechanisms of H2S in secondary neuronal injury will provide important insights into its potential therapeutic uses for the treatment of acute neuronal insult events.
-
Some biochemical and histological studies of Parkinson's disease patients' brains and 6-OHDA-lesioned rats suggest that dopaminergic dennervation of the striatum leads to the nitrergic system hypofunction in this structure. Hence, recently the modulation of nitric oxide (NO)- soluble guanylyl cyclase-cyclic GMP signaling is considered to be a new target for the treatment of Parkinson's disease. The aim of our study was to examine the impact of chronic combined treatment with low doses of the NO donor molsidomine (2 and 4mg/kg) and L-DOPA (12.5 and 25mg/kg) on rotational behavior and monoamine metabolism in the striatum (STR) and substantia nigra (SN) of unilaterally 6-OHDA-lesioned rats. ⋯ Chronic L-DOPA treatment alone or jointly with a lower dose of molsidomine decreased 5-HT levels and accelerated its catabolism in the examined structures. However, combination of a higher dose of molsidomine with L-DOPA (25mg/kg) did not reduce 5-HT content while its catabolism was less intensive. The obtained results show that low doses of molsidomine can modulate rotational behavior and tissue DA and 5-HT concentrations in the STR and SN of 6-OHDA-lesioned rats treated chronically with L-DOPA.
-
In the present study, oxygen-glucose deprivation followed by reperfusion (OGD/R), an in vitro model of ischemia, was used to evaluate the neuroprotective effect of isoquercetin in primary culture of rat cortical neuronal cells. It was found that isoquercetin administered prior to the insult could prevent OGD/R-induced intracellular calcium concentrations ([Ca(2+)]i) increase, lactate dehydrogenase (LDH) release and cell viability decrease. ⋯ Mechanistic studies showed that the neuroprotective effect of isoquercetin was carried out by anti-inflammatory signaling pathway of inhibiting protein expression of toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB), and mRNA expression of TNF-α and IL-6, accompanied by the anti-apoptotic signaling pathway of deactivation of extracellular-regulated kinase (ERK), Jun kinase (JNK) and p38, and inhibition of activity of caspase-3. Therefore, these studies highlighted the confirmation of isoquercetin, a flavonoid compound, as an anti-inflammation and anti-apoptosis factor which might be used as a therapeutic strategy for the ischemia/reperfusion (I/R) brain injury and related diseases.
-
X-linked mental retardation (XLMR) is a common cause of moderate to severe intellectual disability in males. XLMR protein related to neurite extension (Xpn, also known as KIAA2022) has been implicated as a gene responsible for XLMR in humans. Although Xpn is highly expressed in the developing brain and is involved in neurite outgrowth in PC12 cells and neurons, little is known about the functional role of Xpn. ⋯ Furthermore, overexpressed Xpn protein was strongly expressed in the nuclei of PC12 and 293T cells. Finally, depletion of Xpn perturbed cellular migration by enhancing N-cadherin and β1-integrin expression in a PC12 cell wound healing assay. We conclude that Xpn regulates cell-cell and cell-matrix adhesion and cellular migration by regulating the expression of adhesion molecules.
-
Chronic intractable pain caused by postherpetic neuralgia (PHN) can be alleviated by intrathecal (i.t.) steroid therapy. We investigated the possibility that interleukin-6 (IL-6) release in an in vitro system could be a potential marker for evaluating the effectiveness of i.t. steroid therapy in PHN patients. We studied 32 patients who received a course of i.t. injection of water-soluble dexamethasone. ⋯ In particular, therapy effective patients had less IL-6 release even before treatment as compared to therapy ineffective patients. In the therapy effective group, in vitro steroid treatment suppressed the CSF's IL-6 releasing effect almost completely, whereas in the therapy ineffective group, the IL-6 release was significantly reduced but remained detectable. These in vitro tests may provide an objective evaluation on the efficacy of i.t. steroid therapy administered to PHN patients.