The Journal of hospital infection
-
At the peak of the coronavirus disease 2019 (COVID-19) pandemic, hand hygiene audits indicated decreased compliance in a 12-bed critical care (CC) area with ventilated COVID-19 patients, where staff used personal protective equipment (PPE), including sessional use of long-sleeved gowns in accordance with the recommendations of Public Health England. There was also a cluster of three central venous catheter (CVC) infections along with increases in the number of patients from whom enteric Gram-negative bacteria (GNB) were isolated from sterile sites. Environmental sampling of near-patient surfaces and frequently touched sites demonstrated that 11.5% of areas were contaminated with enteric GNB in the COVID-19 CC area, compared with 2.6% and 2.7% in COVID-19 and non-COVID-19 general wards, respectively. ⋯ Long-sleeved gowns prevent HCWs performing hand hygiene effectively. While it is imperative that HCWs are adequately protected, protection of patients from infection hazards is equally important. Further studies are necessary to establish risks from PPE to inform a review of current guidance.
-
Identifying the extent of environmental contamination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for infection control and prevention. The extent of environmental contamination has not been fully investigated in the context of severe coronavirus disease (COVID-19) patients. ⋯ Environmental contamination of SARS-CoV-2 may be a route of viral transmission. However, it might be minimized when patients receive mechanical ventilation with a closed suction system. These findings can provide evidence for guidelines for the safe use of personal protective equipment.
-
In the context of the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, the supply of personal protective equipment remains under severe strain. To address this issue, re-use of surgical face masks and filtering facepiece respirators has been recommended; prior decontamination is paramount to their re-use. ⋯ This is the first description of stable disinfection of face masks and filtering facepiece respirators contaminated with an infectious SARS-CoV-2 surrogate using UV irradiation, vaporized H2O2 and dry heat treatment. The three methods permit demonstration of a loss of infectivity by more than three orders of magnitude of an infectious coronavirus in line with the United States Food and Drug Administration policy regarding face masks and respirators. It presents advantages of uncomplicated manipulation and utilization in a BSL2 facility, therefore being easily adaptable to other respirator and mask types.
-
Wearing a face mask is a major issue in the fight against the spread of the COVID-19 pandemic. The French general population widely started to wear this personal protective equipment usually dedicated to healthcare workers, without being educated to its correct use. ⋯ However, we observed that mask wearing of healthcare workers published in the media during the pandemic only conformed to good practice guidelines in 70.8% of the photographs collected on some of the main French information websites. Health authorities should communicate widely regarding the good practices for mask wearing in the general population.
-
The high demand for personal protective equipment during the novel coronavirus outbreak has prompted the need to develop strategies to conserve supply. Little is known regarding decontamination interventions to allow for surgical mask reuse. ⋯ There is limited evidence on the safety or efficacy of surgical mask decontamination. Given the heterogeneous methods used in studies to date, we are unable to draw conclusions on the most efficacious and safe intervention for decontaminating surgical masks.