Carcinogenesis
-
Fenretinide [N-(4-hydroxyphenyl)-retinamide (4HPR)] is a synthetic retinoid with antitumor activity that induces apoptosis in various types of cancer cell. We showed previously that 4HPR upregulates the proapoptotic gene placental bone morphogenetic protein (PLAB), which is a mediator of 4HPR-induced apoptosis in ovarian cancer cells. Here, we investigated the signaling cascade involving PLAB that mediates the apoptotic effect. ⋯ Downstream of ROS generation and ER stress, 4HPR activated c-Jun N-terminal kinase (JNK), which was inhibited by vitamin C and salubrinal. The JNK inhibitor SP600125 reduced 4HPR-induced PLAB upregulation, by decreasing PLAB mRNA half-life, and protected the cells from apoptosis. These data indicate that 4HPR-induced PLAB upregulation occurs downstream of a signaling cascade involving ROS generation, ER stress induction and JNK activation and that these steps are mediators of 4HPR-induced apoptosis.
-
FGFR2 and MAP3K1 are members of the RAS/RAF/MEK/ERK-signaling pathway and have been identified from genome-wide association studies to be breast cancer susceptibility genes. Potential interactions of these genes and their role with respect to tumor markers, hormonal factors and race on breast cancer risk have not been explored. We examined FGFR2 and MAP3K1 variants, breast tumor characteristics and hormone exposures in a population-based case-control sample of 1225 European-American (EA) and 584 African-American (AA) women. ⋯ Finally, we observed a significant interaction between MAP3K1 rs889312 and FGFR2 rs2981582 (P = 0.022) in AA but not EA women. These results confirm that FGFR2 and MAP3K1 are involved in breast cancer susceptibility and confer their effects primarily in ER+ and PR+ tumors. We further report that these genes confer their effects in HER2- tumors, interact with one another to confer breast cancer susceptibility in AA women and interact with hormone exposures in AA and EA women.
-
Although several mechanisms have been proposed to explain the putative role of beta-carotene in cancer, no studies have investigated a possible influence of beta-carotene on caveolin-1 (cav-1) pathway, an important intracellular signaling deregulated in cancer. Here, different human colon and prostate cancer cell lines, expressing (HCT-116, PC-3 cells) or not (Caco-2, LNCaP cells) cav-1, were treated with varying concentrations of beta-carotene (0.5-30 muM) for different periods of time (3-72 h) and the effects on cell growth were investigated. ⋯ Silencing of c-Myc attenuated beta-carotene-induced apoptosis and beta-catenin expression. All together, these data suggest that the modulation of cav-1 pathway by beta-carotene could be a novel mechanism by which the carotenoid acts as a potent growth-inhibitory agent in cancer cells.
-
Requirement for Ras/Raf/ERK pathway in naringin-induced G1-cell-cycle arrest via p21WAF1 expression.
Naringin, an active flavonoid found in citrus fruit extracts, has pharmacological utility. The present study identified a novel mechanism of the anticancer effects of naringin in urinary bladder cancer cells. Naringin treatment resulted in significant dose-dependent growth inhibition together with G(1)-phase cell-cycle arrest at a dose of 100 microM (the half maximal inhibitory concentration) in 5637 cells. ⋯ Finally, the naringin-induced reduction in cell proliferation and cell-cycle proteins also was abolished in the presence of RasN17 and RafS621A mutant genes. These data demonstrate that the Ras/Raf/ERK pathway participates in p21WAF1 induction, subsequently leading to a decrease in the levels of cyclin D1/CDK4 and cyclin E-CDK2 complexes and naringin-dependent inhibition of cell growth. Overall, these unexpected findings concerning the molecular mechanisms of naringin in 5637 cancer cells provide a theoretical basis for the therapeutic use of flavonoids to treat malignancies.
-
Vitamin D receptor (VDR) gene variants have been variably associated with risk of colon cancer in epidemiologic studies. We sought to further clarify the relationship between colon cancer and three single-nucleotide polymorphisms (SNPs) in the VDR gene (Cdx-2, FokI and TaqI) in a population-based case-control study of 250 incident cases and 246 controls. Colon cancer cases were more frequently homozygous for the Cdx-2 A allele (9.2 versus 4.1%, P = 0.06). ⋯ The three-SNP Cdx-2-FokI-TaqI (A-T-G) haplotype showed a similar association with an adjusted OR of 3.63 (CI: 1.01-13.07). A strong positive association was observed for the Cdx-2 variant among individuals with low BMI or low waist circumference. Our results suggest that genetic variation at the VDR locus, in particular Cdx-2 and FokI SNPs, may influence colon cancer risk and these associations may be modified by adiposity.