Peptides
-
Alterations of somatostatin-like immunoreactivity (SST-LI) in the plasma of 11 systemic inflammatory response syndrome (SIRS) patients were investigated in correlation with cytokines, adhesion molecules and coagulation markers repeatedly during 4 days. The origin and role of SST were studied in the cecum ligation and puncture (CLP) rat SIRS model. Capsaicin-sensitive peptidergic sensory nerves were defunctionalized by resiniferatoxin (RTX) pretreatment 2 weeks earlier, in a separate group animals were treated with the somatostatin receptor antagonist cyclo-somatostatin (C-SOM). ⋯ Most non-pretreated operated rats survived the 6h, but 60% of the RTX-pretreated ones died showing a significantly worse survival. This is the first comprehensive study in humans and animal experiments providing evidence that SST is released from the activated peptidergic sensory nerves. It gets into the bloodstream and mediates a potent endogenous protective mechanism.
-
Scorpion venoms are complex mixtures of dozens or even hundreds of distinct proteins, many of which have diverse bioactivities. In this study, after bioassay-driven chromatographic purification, a new dual-function peptide with analgesic and antitumor activities was isolated and designated BmK AGAP-SYPU2. The first 12 amino acid residues were sequenced with Edman degradation. ⋯ Sequence alignment and homology modeling showed that BmK AGAP-SYPU2 is highly conserved relative to other scorpion α-toxins. However, a few different amino acids endow it with unique molecular properties, which may be responsible for its specific bioactivities. BmK AGAP-SYPU2, a new scorpion neurotoxin with dual functions, is a potential candidate drug amenable to exploitation and modification.
-
The involvement of the μ-opioid receptor subtypes on the presynaptic or postsynaptic inhibition of spinal pain transmission was characterized in ddY mice using endomorphins. Intrathecal treatment with capsaicin, N-methyl-d-aspartate (NMDA) or substance P elicited characteristic nociceptive behaviors that consisted primarily of vigorous biting and/or licking with some scratching. Intrathecal co-administration of endogenous μ-opioid peptide endomorphin-1 or endomorphin-2 resulted in a potent antinociceptive effect against the nociceptive behaviors induced by capsaicin, NMDA or substance P, which was eliminated by i.t. co-administration of the μ-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP). ⋯ In contrast, the antinociceptive effect of endomorphin-2 was significantly suppressed by i.t.-co-administration of D-Pro2-endomorphin-2 but not D-Pro2-endomorphin-1 on capsaicin-, NMDA- or substance P-elicited nociceptive behaviors. Interestingly, regarding substance P-elicited nociceptive behaviors, the antinociceptive effect of endomorphin-1 was significantly suppressed by i.t.-co-administration of another μ2-opioid receptor antagonist, Tyr-D-Pro-Trp-Gly-NH2 (D-Pro2-Tyr-W-MIF-1), but not D-Pro2-endomorphin-1 or D-Pro2-endomorphin-2. The present results suggest that the multiple μ-opioid receptor subtypes are involved in the presynaptic or postsynaptic inhibition of spinal pain transmission.
-
The renin-angiotensin system (RAS) regulates skeletal muscle insulin sensitivity through different mechanisms. The overactivation of the ACE (angiotensin-converting enzyme)/Ang (angiotensin) II/AT1R (Ang II type 1 receptor) axis has been associated with the development of insulin resistance, whereas the stimulation of the ACE2/Ang 1-7/MasR (Mas receptor) axis improves insulin sensitivity. The in vivo mechanisms by which this axis enhances skeletal muscle insulin sensitivity are scarcely known. ⋯ In a similar manner, captopril (an ACE inhibitor) enhanced insulin-induced glucose uptake and this effect was blocked by the MasR antagonist A-779. Our results show for the first time that rat soleus muscle expresses the ACE2/Ang 1-7/MasR axis of the RAS, and Ang 1-7 improves insulin sensitivity by enhancing insulin-stimulated glucose uptake in rat skeletal muscle in vivo. Thus, endogenous (systemic and/or local) Ang 1-7 could regulate insulin-mediated glucose transport in vivo.
-
This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).