Neurobiology of aging
-
Neurobiology of aging · Sep 2014
Rescue of cognitive-aging by administration of a neurogenic and/or neurotrophic compound.
Aging is characterized by a progressive decline of cognitive performance, which has been partially attributed to structural and functional alterations of hippocampus. Importantly, aging is the major risk factor for the development of neurodegenerative diseases, especially Alzheimer's disease. An important therapeutic approach to counteract the age-associated memory dysfunctions is to maintain an appropriate microenvironment for successful neurogenesis and synaptic plasticity. ⋯ In vivo magnetic resonance spectroscopy revealed age-dependent alterations in hippocampal content of several metabolites. Remarkably, P021 was effective in significantly reducing myoinositol (INS) concentration, which was increased in aged compared with young rats. These findings suggest that stimulating endogenous neuroprotective mechanisms is a potential therapeutic approach to cognitive aging, Alzheimer's disease, and associated neurodegenerative disorders and P021 is a promising compound for this purpose.
-
L-arginine is a semi-essential amino acid with a number of bioactive metabolites. Accumulating evidence suggests the implication of altered arginine metabolism in the pathogenesis of Alzheimer's disease (AD). ⋯ There were also AD- and age-related changes in the tissue concentrations of L-arginine and its downstream metabolites (L-citrulline, L-ornithine, agmatine, putrescine, spermidine, spermine, glutamate, γ-aminobutyric acid, and glutamine) in a metabolite- or region-specific manner. These findings demonstrate that arginine metabolism is dramatically altered in diverse regions of AD brains, thus meriting further investigation to understand its role in the pathogenesis and/or progression of the disease.
-
Neurobiology of aging · Jul 2014
Maternal separation impairs long term-potentiation in CA1-CA3 synapses and hippocampal-dependent memory in old rats.
Exposure to chronic stress during the neonatal period is known to induce permanent long-term changes in the central nervous system and hipothalamic-pituitary-adrenal axis reactivity that are associated with increased levels of depression, anxiety, and cognitive impairments. In rodents, a validated model of early life stress is the maternal separation (MS) paradigm, which has been shown to have long-term consequences for the pups that span to adulthood. We hypothesized that the early life stress-associated effects could be exacerbated with aging, because it is often accompanied by cognitive decline. ⋯ We then investigated whether these differences are linked to impaired function of hippocampal neurons by recording hippocampal long-term potentiation from Schaffer collaterals/CA1 synapses. The magnitude of the hippocampal long-term potentiation induced by high-frequency stimulation was significantly lower in aged MS animals than in age-matched controls. These results substantiate the hypothesis that the neuronal and endocrine alterations induced by early-life stress are long lasting, and are able to exacerbate the mild age-associated deficits.
-
TREM and TREM-like receptors are a structurally similar protein family encoded by genes clustered on chromosome 6p21.11. Recent studies have identified a rare coding variant (p. R47H) in TREM2 that confers a high risk for Alzheimer's disease (AD). ⋯ Here, we report comprehensive analyses using whole-exome sequencing data, cerebrospinal fluid biomarker analyses, meta-analyses (16,254 cases and 20,052 controls) and cell-based functional studies to support the role of the TREML2 coding missense variant p. S144G (rs3747742) as a potential driver of the meta-analysis AD-associated genome-wide association studies signal. Additionally, we demonstrate that the protective role of TREML2 in AD is independent of the role of TREM2 gene as a risk factor for AD.
-
Neurobiology of aging · Jun 2014
Investigation of triggering receptor expressed on myeloid cells 2 variant in the Wisconsin Registry for Alzheimer's Prevention.
Recent studies have found an association between a variant in triggering receptor expressed on myeloid cells 2 (TREM2) (rs75932628-T) and both Alzheimer's disease (AD) and cognitive function in individuals aged 80-100 years. The role of TREM2 in younger, asymptomatic individuals is unknown. We examined this variant in 1148 participants from the Wisconsin Registry for Alzheimer's Prevention, a longitudinal study of middle-aged adults enriched for a parental history of AD. ⋯ Carriers were more likely to have a parental history of AD (100% of carriers vs. 70% of noncarriers; p = 0.01) and, among the parental history subset, families with a TREM2 carrier had a younger maternal age of AD onset than noncarriers (67.9 vs. 75.6 years; p = 0.03). There was no significant association between TREM2 carrier status and cognitive function or decline. In conclusion, the association between TREM2 and both parental history of AD and younger maternal age of AD onset provide additional support for the role of TREM2 in AD and illustrate the importance of considering family history in AD study design.