Neurobiology of aging
-
Neurobiology of aging · Jun 2017
Selective deletion of apolipoprotein E in astrocytes ameliorates the spatial learning and memory deficits in Alzheimer's disease (APP/PS1) mice by inhibiting TGF-β/Smad2/STAT3 signaling.
Astrocytes and apolipoprotein E (apoE) play critical roles in cognitive function, not only under physiological conditions but also in some pathological situations, particularly in the pathological progression of Alzheimer's disease (AD). The regulatory mechanisms underlying the effect of apoE, derived from astrocytes, on cognitive deficits during AD pathology development are unclear. In this study, we generated amyloid precursor protein/apoE knockout (APP/apoEKO) and APP/glial fibrillary acidic protein (GFAP)-apoEKO mice (the AD mice model used in this study was based on the APP-familial Alzheimer disease overexpression) to investigate the role of apoE, derived from astrocytes, in AD pathology and cognitive function. ⋯ In contrast, repression of TGF-β in astrocytes of APP/WT mice exerted a therapeutic effect similar to apoE knockout. These data suggested that apoE derived from astrocytes contributes to the risk of AD through TGF-β/Smad2/STAT3 signaling activation. These findings enhance our understanding of the role of apoE, derived from astrocytes, in AD and suggest it to be a potential biomarker and therapeutic target for AD.
-
Neurobiology of aging · May 2017
Genetic analysis of the SOD1 and C9ORF72 genes in Hungarian patients with amyotrophic lateral sclerosis.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of motor neurons. To date, more than 20 genes have been implicated in ALS, and of these, the 2 most frequently mutated are the superoxide dismutase 1 (SOD1) gene and the chromosome 9 open reading frame 72 (C9ORF72) gene. In this study, we aimed to investigate the contribution of these 2 Mendelian genes to the development of the disease in Hungarian ALS patients (n = 66). ⋯ Lys91ArgfsTer8 mutation led to a frameshift causing the addition of 8 new amino acids, including a premature stop codon at position 99. The GGGGCC hexanucleotide repeat expansion of the C9ORF72 gene was present in 1 ALS patient. This study represents the first genetic analysis of 2 major ALS causative genes in a cohort of Hungarian ALS patients and contributes to the further understanding of the genetic and phenotypic diversity of ALS.
-
Neurobiology of aging · Apr 2017
ReviewClinical validity of presynaptic dopaminergic imaging with 123I-ioflupane and noradrenergic imaging with 123I-MIBG in the differential diagnosis between Alzheimer's disease and dementia with Lewy bodies in the context of a structured 5-phase development framework.
The use of biomarkers (BMs) for accurate diagnosis of Alzheimer's disease (AD) has been proposed by recent diagnostic criteria; however, their maturity is not sufficient to grant implementation in the clinical routine. A proper diagnostic process requires not only confirmation of the disease but also the exclusion of similar disorders entering differential diagnosis, like dementia with Lewy bodies (DLB). This review is aimed at evaluating the clinical validity of 123I-ioflupane brain single photon emission tomography and 123I-MIBG cardiac scintigraphy as imaging BMs for DLB. ⋯ The 2 BMs have not been yet assessed in early phases of DLB and AD (phase 3). No phase 4 and phase 5 studies have so far been carried out. This review highlights the priorities to address in future investigations to enable the proper use of 123I-ioflupane and 123I-MIBG for the differential diagnosis of dementia.
-
Neurobiology of aging · Apr 2017
ReviewClinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer's disease in the context of a structured 5-phase development framework.
The use of Alzheimer's disease (AD) biomarkers is supported in diagnostic criteria, but their maturity for clinical routine is still debated. Here, we evaluate brain fluorodeoxyglucose positron emission tomography (FDG PET), a measure of cerebral glucose metabolism, as a biomarker to identify clinical and prodromal AD according to the framework suggested for biomarkers in oncology, using homogenous criteria with other biomarkers addressed in parallel reviews. FDG PET has fully achieved phase 1 (rational for use) and most of phase 2 (ability to discriminate AD subjects from healthy controls or other forms of dementia) aims. ⋯ Phase 4 studies (routine use in prodromal patients) are ongoing, and only preliminary results can be extrapolated from retrospective observations. Phase 5 studies (quantify impact and costs) have not been performed. The results of this study show that specific efforts are needed to complete phase 3 evidence, in particular comparing and combining FDG PET with other biomarkers, and to properly design phase 4 prospective studies as a basis for phase 5 evaluations.
-
Neurobiology of aging · Apr 2017
ReviewClinical validity of increased cortical uptake of amyloid ligands on PET as a biomarker for Alzheimer's disease in the context of a structured 5-phase development framework.
The use of biomarkers has been proposed for diagnosing Alzheimer's disease in recent criteria, but some biomarkers have not been sufficiently investigated to justify their routine clinical use. Here, we evaluate in a literature review the clinical validity of amyloid positron emission tomography (PET) imaging using a structured framework developed for the assessment of oncological biomarkers. Homogenous criteria have been addressed in reviews of other Alzheimer's disease biomarkers. ⋯ Phase 5 studies (quantification of impact and costs) are still to come. This review highlights the priorities to be pursued to enable the proper use of amyloid PET imaging in a clinical setting. Future investigations will primarily be large, phase 4 studies that will assess the utility of amyloid PET imaging in routine clinical practice.