Neurobiology of aging
-
Neurobiology of aging · Jul 2016
Vagus nerve stimulation during rehabilitative training enhances recovery of forelimb function after ischemic stroke in aged rats.
Advanced age is associated with a higher incidence of stroke and worse functional outcomes. Vagus nerve stimulation (VNS) paired with rehabilitative training has emerged as a potential method to improve recovery after brain injury but to date has only been evaluated in young rats. Here, we evaluated whether VNS paired with rehabilitative training would improve recovery of forelimb function after ischemic lesion of the motor cortex in rats 18 months of age. ⋯ Rehabilitative training without VNS results in a 34% ± 19% recovery, whereas VNS paired with rehabilitative training yields a 98% ± 8% recovery of prelesion of forelimb function. VNS does not significantly reduce lesion size. These findings demonstrate that VNS paired with rehabilitative training enhances motor recovery in aged subjects in a model of stroke and may suggest that VNS therapy may effectively translate to elderly stroke patients.
-
Neurobiology of aging · Jun 2016
Opposing roles of the triggering receptor expressed on myeloid cells 2 and triggering receptor expressed on myeloid cells-like transcript 2 in microglia activation.
Mutations in triggering receptor expressed on myeloid cells 2 (TREM2), which has been proposed to regulate the inflammatory responses and the clearance of apoptotic neurons and/or amyloid-β, are genetically linked to increased risk for late-onset Alzheimer's disease (AD). Interestingly, a missense variant in TREM-like transcript 2 (TREML2), a structurally similar protein encoded by the same gene cluster with TREM2 on chromosome 6, has been shown to protect against AD. However, the molecular mechanisms by which TREM2 and TREML2 regulate the pathogenesis of AD, and their functional relationship, if any, remain unclear. ⋯ In addition, the proliferation of primary microglia was significantly decreased when TREM2 was down regulated, whereas it was increased on TREML2 knockdown. Together, our results suggest that several microglial functions are strictly regulated by TREM2 and TREML2, whose dysfunctions likely contribute to AD pathogenesis by impairing brain innate immunity. Our findings provide novel mechanistic insights into the functions of TREM2 and TREML2 in microglia and have implications on designing new therapeutic strategies to treat AD.
-
Neurobiology of aging · May 2016
The executive prominent/memory prominent spectrum in Alzheimer's disease is highly heritable.
Late-onset Alzheimer's disease (LOAD) can present heterogeneously, with several subtypes recognized, including dysexecutive AD. One way to identify people with dysexecutive AD is to consider the difference between memory and executive functioning, which we refer to as the executive prominent/memory prominent spectrum. We aimed to determine if this spectrum was heritable. ⋯ Narrow-sense heritability of the difference between memory and executive functioning scores was 0.68 (standard error 0.12). Single nucleotide polymorphisms on chromosomes 1, 2, 4, 11, 12, and 18 explained the largest fraction of phenotypic variance, with signals from each chromosome accounting for 5%-7%. The chromosomal pattern of heritability differed substantially from that of LOAD itself.
-
Neurobiology of aging · May 2016
Age differences in the functional interactions among the default, frontoparietal control, and dorsal attention networks.
Older adults typically show weaker functional connectivity (FC) within brain networks compared with young adults, but stronger functional connections between networks. Our primary aim here was to use a graph theoretical approach to identify age differences in the FC of 3 networks-default mode network (DMN), dorsal attention network, and frontoparietal control (FPC)-during rest and task conditions and test the hypothesis that age differences in the FPC would influence age differences in the other networks, consistent with its role as a cognitive "switch." At rest, older adults showed lower clustering values compared with the young, and both groups showed more between-network connections involving the FPC than the other 2 networks, but this difference was greater in the older adults. Connectivity within the DMN was reduced in older compared with younger adults. ⋯ These findings provide additional evidence of less within-network but greater between-network FC in older adults during rest but also show that these age differences can be altered by the residual influence of task demands on background connectivity. Our results also support a role for the FPC as the regulator of other brain networks in the service of cognition. Critically, the link between age differences in inter-network connections of the FPC and DMN connectivity, and the link between FPC connectivity and performance, support the hypothesis that FC of the FPC influences the expression of age differences in other networks, as well as differences in cognitive function.
-
Neurobiology of aging · Apr 2016
Mutational analysis of TBK1 in Taiwanese patients with amyotrophic lateral sclerosis.
Mutations in the TBK1 gene were just recently identified to cause amyotrophic lateral sclerosis (ALS), and their role in ALS in various populations remains unclear. The aim of this study was to determine the frequency and spectrum of mutations in TBK1 in a Taiwanese ALS cohort of Han Chinese origin. Mutational analyses of TBK1 were carried out by direct nucleotide sequencing in a cohort of 207 unrelated patients with ALS. ⋯ R444X mutation resulting in a truncated TANK-binding kinase 1 (TBK1) protein product, low protein expression, and loss of kinase function and interaction with optineurin. The frequency of TBK1 mutations in ALS patients in Taiwan is, therefore, approximately 0.5% (1/207). This study reports a novel TBK1 mutation and stresses on the importance to consider TBK1 mutation as a possible etiology of ALS.