The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Alzheimer's Disease (AD) is a neurodegenerative disorder that is characterized by extracellular deposits of amyloid-beta peptide (Abeta) and a severe depletion of the cholinergic system, although the relationship between these two events is poorly understood. In the neocortex, there is a loss of cholinergic fibers and receptors and a decrease of both choline acetyltransferase (ChAT) and acetylcholinesterase enzyme activities. The nucleus basalis of Meynert (NBM), which provides the major cholinergic input to the neocortex, undergoes profound neuron loss in AD. ⋯ There was a 19% decrease in Abeta levels of the ipsilateral compared with contralateral frontal cortex with no change in the ratio of Abeta40 to Abeta42. We conclude that the severe cholinergic deficit in AD is caused by both the loss of cholinergic basal forebrain neurons and locally by cerebral amyloidosis in the neocortex. Moreover, our results suggest that disruption of the basal cholinergic forebrain system does not promote cerebral amyloidosis in APP23 transgenic mice.
-
Anticipation of pain is a complex state that may influence the perception of subsequent noxious stimuli. We used functional magnetic resonance imaging (fMRI) to study changes of activity of cortical nociceptive networks in healthy volunteers while they expected the somatosensory stimulation of one foot, which might be painful (subcutaneous injection of ascorbic acid) or not. Subjects had no previous experience of the noxious stimulus. ⋯ Negatively correlated clusters were found in the anteroventral cingulate bilaterally. In all of these areas, changes during anticipation were of the same sign as those observed during pain but less intense ( approximately 30-40% as large as peak changes during actual noxious stimulation). These results provide evidence for top-down mechanisms, triggered by anticipation, modulating cortical systems involved in sensory and affective components of pain even in the absence of actual noxious input and suggest that the activity of cortical nociceptive networks may be directly influenced by cognitive factors.
-
Neuronal precursors in the adult rodent forebrain subventricular zone (SVZ) proliferate, migrate to the olfactory bulb in a restricted pathway known as the rostral migratory stream (RMS), and differentiate into neurons. The effects of injury on this neurogenic region of the mature brain are poorly understood. To determine whether seizure-induced injury modulates SVZ neurogenesis, we induced status epilepticus (SE) in adult rats by systemic chemoconvulsant administration and examined patterns of neuronal precursor proliferation and migration in the SVZ-olfactory bulb pathway. ⋯ BrdU labeling and stereotactic injections of retroviral reporters into the SVZ showed that prolonged seizures also increased neuroblast migration to the olfactory bulb and induced a portion of the neuronal precursors to exit the RMS prematurely. These findings indicate that SE expands the SVZ neuroblast population and alters neuronal precursor migration in the adult rat forebrain. Identification of the mechanisms underlying the response of neural progenitors to seizure-induced injury may help to advance brain regenerative therapies by using either transplanted or endogenous neural precursor cells.
-
Wallerian degeneration (WD) is the inflammatory response of the nervous system to axonal injury, primarily attributable to the production of cytokines, the mediator molecules of inflammation. We presently document the involvement of the inflammatory cytokines TNFalpha, interleukin (IL)-1alpha, and IL-1beta in peripheral nerve (PNS) injury in C57/BL/6NHSD (C57/BL) mice that display the normal rapid progression of WD (rapid-WD) and C57/BL/6-WLD/OLA/NHSD mice that display abnormal slow progression of WD (slow-WD). TNFalpha and IL-1alpha mRNAs were expressed, whereas TNFalpha but not IL-1alpha protein was synthesized in intact PNS of C57/BL mice. ⋯ TNFalpha and IL-1alpha may initiate, therefore, molecular and cellular events in rapid-WD (e.g., the production of additional cytokines and NGF). TNFalpha, IL-1alpha, and IL-1beta may further regulate, indirectly, macrophage recruitment, myelin removal, regeneration, and neuropathic pain. In contrast to rapid-WD, the production of TNFalpha, IL-1alpha, and IL-1beta protein was deficient in slow-WD, although their mRNAs were expressed. mRNA expression and protein production of TNFalpha, IL-1alpha, and IL-1beta were differentially regulated during rapid-WD and slow-WD, suggesting that mRNA expression, by itself, is no indication of the functional involvement of cytokines in WD.
-
Lymphocytes respond to myelin proteins after spinal cord injury (SCI) and may contribute to post-traumatic secondary degeneration. However, there is increasing evidence that autoreactive T-lymphocytes may also convey neuroprotection and promote functional recovery after CNS injury. To clarify the role of myelin autoreactive lymphocytes after SCI, we performed contusion injuries in the thoracic spinal cord of transgenic (Tg) mice in which >95% of all CD4+ T-lymphocytes are reactive with myelin basic protein (MBP). ⋯ Any neuroprotection afforded by myelin-reactive T-cells is likely to be an indirect effect mediated by other non-CNS-reactive lymphocytes. Similar to the Tg mice in this study, a subset of humans that are genetically predisposed to autoimmune diseases of the CNS may be adversely affected by vaccine therapies designed to boost autoreactive lymphocyte responses after CNS trauma. Consequently, the safe implementation of such therapies requires that future studies define the mechanisms that control T-cell function within the injured CNS.