The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Modification of synaptic NMDA receptor (NMDAR) expression influences NMDAR-mediated synaptic function and associated persistent pain. NMDARs directly bind to a family of membrane-associated guanylate kinases (MAGUKs) that regulate surface and synaptic NMDAR trafficking in the CNS. ⋯ Furthermore, mice lacking PSD-93 exhibit blunted NMDAR-dependent persistent pain induced by peripheral nerve injury or injection of Complete Freund's Adjuvant, although they display intact nociceptive responsiveness to acute pain. PSD-93 appears to be important for NMDAR synaptic targeting and function and to be a potential biochemical target for the treatment of persistent pain.
-
Brain-derived neurotrophic factor (BDNF) is thought to be involved in neuronal survival, migration, morphological and biochemical differentiation, and modulation of synaptic function in the CNS. In the rodent cortex, postnatal BDNF expression is initially low but subsequently increases to reach maximal levels around weaning. Thus, BDNF expression peaks at a time when both structural and functional maturation of cortical circuitry occurs. ⋯ Importantly, although visual cortical layer 2/3 neurons in the mutants initially developed normal dendrite structure, dendritic retraction became apparent by 3 weeks of age. Thus, our observations suggest that cortically expressed BDNF functions to support the maintenance of cortical neuron size and dendrite structure rather than the initial development of these features. This is consistent with a role for BDNF in stabilizing the "survival" of circuitry during the phase of activity-dependent reorganization of cortical connectivity.
-
Changes in the expression of ion channels, contributing to altered neuronal excitability, are emerging as possible mechanisms in the development of certain human epilepsies. In previous immature rodent studies of experimental prolonged febrile seizures, isoform-specific changes in the expression of hyperpolarization-activated cyclic nucleotide-gated cation channels (HCNs) correlated with long-lasting hippocampal hyperexcitability and enhanced seizure susceptibility. Prolonged early-life seizures commonly precede human temporal lobe epilepsy (TLE), suggesting that transcriptional dysregulation of HCNs might contribute to the epileptogenic process. ⋯ These findings indicate that the expression of HCN isoforms is dynamically regulated in human as well as in experimental hippocampal epilepsy. After experimental febrile seizures (i.e., early in the epileptogenic process), the preserved and augmented inhibition onto principal cells may lead to reduced HCN1 expression. In contrast, in chronic epileptic HS hippocampus studied here, the profound loss of interneuronal and principal cell populations and consequent reduced inhibition, coupled with increased dendritic excitation of surviving GCs, might provoke a "compensatory" enhancement of HCN1 mRNA and protein expression.
-
Thealpha2C subclass of adrenergic receptor (alpha2C-AR) mediates some of the antinociceptive actions of norepinephrine in the spinal cord. Axon terminals, which possess this receptor, are concentrated in the superficial dorsal horn and originate from spinal interneurons. We performed a series of combined tract-tracing and immunocytochemical studies to determine whether alpha2C-AR-immunoreactive axons target projection neurons that possess the neurokinin-1 (NK-1) receptor because such cells are likely to transmit nociceptive information to the brain. ⋯ Additional experiments showed that virtually all alpha2C-AR terminals in contact with labeled cells are also immunoreactive for the vesicular glutamate transporter 2 and therefore are glutamatergic. These data suggest that norepinephrine can modulate excitatory synaptic transmission from spinal interneurons to projection cells by acting at alpha2C-ARs. This could be one of the mechanisms that underlie the antinociceptive actions of norepinephrine.
-
Dendritic spines have two major structural elements: postsynaptic densities (PSDs) and actin cytoskeletons. PSD proteins are proposed to regulate spine morphogenesis. However, other molecular mechanisms should govern spine morphogenesis, because the initiation of spine morphogenesis precedes the synaptic clustering of these proteins. ⋯ Furthermore, the restoration of drebrin A expression by injection of the expression vectors of drebrin A tagged with green fluorescent protein into the neurons treated with the antisense oligonucleotides induced synaptic reclustering of PSD-95 on clusters of the labeled drebrin A. These data indicated that the synaptic clustering of drebrin is necessary for that of PSD-95 in developing neurons. Together, these data suggest that synaptic clustering of drebrin is an essential step for spine morphogenesis.