The Journal of neuroscience : the official journal of the Society for Neuroscience
-
To investigate whether activation of mitogen-activated protein kinase (MAPK) in damaged and/or undamaged primary afferents participates in neuropathic pain after partial nerve injury, we examined the phosphorylation of extracellular signal-regulated protein kinase (ERK), p38 MAPK, and c-Jun N-terminal kinase (JNK) in the L4 and L5 dorsal root ganglion (DRG) in the L5 spinal nerve ligation (SNL) model. We first confirmed, using activating transcription factor 3 and neuropeptide Y immunoreactivity, that virtually all L4 DRG neurons are spared from axotomy in this model. In the injured L5 DRG, the L5 SNL induced the activation of ERK, p38, and JNK in different populations of DRG neurons. ⋯ We therefore hypothesized that p38 activation in the uninjured L4 DRG might be involved in the development of heat hypersensitivity in the L5 SNL model. In fact, the treatment of the p38 inhibitor and also anti-nerve growth factor reduced SNL-induced upregulation of brain-derived neurotrophic factor and transient receptor potential vanilloid type 1 expression in the L4 DRG. Together, our results demonstrate that the L5 SNL induces differential activation of MAPK in injured and uninjured DRG neurons and, furthermore, that MAPK activation in the primary afferents may participate in generating pain hypersensitivity after partial nerve injury.
-
Clinical Trial Controlled Clinical Trial
Transcranial direct current stimulation during sleep improves declarative memory.
In humans, weak transcranial direct current stimulation (tDCS) modulates excitability in the motor, visual, and prefrontal cortex. Periods rich in slow-wave sleep (SWS) not only facilitate the consolidation of declarative memories, but in humans, SWS is also accompanied by a pronounced endogenous transcortical DC potential shift of negative polarity over frontocortical areas. To experimentally induce widespread extracellular negative DC potentials, we applied anodal tDCS (0.26 mA) [correction] repeatedly (over 30 min) bilaterally at frontocortical electrode sites during a retention period rich in SWS. ⋯ Acutely, anodal tDCS increased slow oscillatory activity <3 Hz. We conclude that effects of tDCS involve enhanced generation of slow oscillatory EEG activity considered to facilitate processes of neuronal plasticity. Shifts in extracellular ionic concentration in frontocortical tissue (expressed as negative DC potentials during SWS) may facilitate sleep-dependent consolidation of declarative memories.