The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Comparative Study
Na(V)1.7 mutant A863P in erythromelalgia: effects of altered activation and steady-state inactivation on excitability of nociceptive dorsal root ganglion neurons.
Inherited erythromelalgia/erythermalgia (IEM) is a neuropathy characterized by pain and redness of the extremities that is triggered by warmth. IEM has been associated with missense mutations of the voltage-gated sodium channel Na(V)1.7, which is preferentially expressed in most nociceptive dorsal root ganglia (DRGs) and sympathetic ganglion neurons. Several mutations occur in cytoplasmic linkers of Na(V)1.7, with only two mutations in segment 4 (S4) and S6 of domain I. ⋯ We tested this hypothesis by studying properties of rat DRG neurons transfected with either A863P or WT channels. A863P depolarized resting potential of DRG neurons by +6 mV compared with WT channels, reduced the threshold for triggering single action potentials to 63% of that for WT channels, and increased firing frequency of neurons when stimulated with suprathreshold stimuli. Thus, A863P mutant channels produce hyperexcitability in DRG neurons, which contributes to the pathophysiology of IEM.
-
Comparative Study
Contribution of TRPM8 channels to cold transduction in primary sensory neurons and peripheral nerve terminals.
Transient receptor potential melastatin 8 (TRPM8) is the best molecular candidate for innocuous cold detection by peripheral thermoreceptor terminals. To dissect out the contribution of this cold- and menthol-gated, nonselective cation channel to cold transduction, we identified BCTC [N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl)piperazine-1-carboxamide] as a potent and full blocker of recombinant TRPM8 channels. In cold-sensitive trigeminal ganglion neurons of mice and guinea pig, responses to menthol were abolished by BCTC. ⋯ However, the spontaneous activity and firing pattern characteristic of cold thermoreceptors was totally immune to TRPM8 channel blockade with BCTC or SKF96365 (1-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl)propoxy]ethyl-1H-imidazole hydrochloride). Cold-evoked responses in corneal terminals were also essentially unaffected by these drugs, whereas responses to menthol were completely abolished. The minor impairment in the ability to transduce cold stimuli by peripheral corneal thermoreceptors during TRPM8 blockade unveils an overlapping functional role for various thermosensitive mechanisms in these nerve terminals.
-
Comparative Study
Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain.
Living with unrelenting pain (chronic pain) is maladaptive and is thought to be associated with physiological and psychological modifications, yet there is a lack of knowledge regarding brain elements involved in such conditions. Here, we identify brain regions involved in spontaneous pain of chronic back pain (CBP) in two separate groups of patients (n = 13 and n = 11), and contrast brain activity between spontaneous pain and thermal pain (CBP and healthy subjects, n = 11 each). Continuous ratings of fluctuations of spontaneous pain during functional magnetic resonance imaging were separated into two components: high sustained pain and increasing pain. ⋯ In contrast, the increasing phase of CBP transiently activated brain regions commonly observed for acute pain, best exemplified by the insula, which tightly reflected duration of CBP. When spontaneous pain of CBP was contrasted to thermal stimulation, we observe a double-dissociation between mPFC and insula with the former correlating only to intensity of spontaneous pain and the latter correlating only to pain intensity for thermal stimulation. These findings suggest that subjective spontaneous pain of CBP involves specific spatiotemporal neuronal mechanisms, distinct from those observed for acute experimental pain, implicating a salient role for emotional brain concerning the self.
-
The hypothesis that Nogo-A (Reticulon 4A) and Nogo-66 receptor (NgR1) limit adult CNS axonal growth after injury is supported by both in vitro experiments and in vivo pharmacological studies. However, genetic assessment of the role of Nogo-A in corticospinal tract (CST) axons after spinal cord dorsal hemisection has yielded conflicting results. CST regeneration is detected in homozygous nogo-ab(trap/trap) mice, but not in nogo-ab(atg/atg) mice. ⋯ There is robust pyramidotomy-induced growth of nogo-ab(atg/atg) and ngr1(-/-) CST axons into denervated cervical gray matter. This fiber growth correlates with recovery of fine motor skill in the affected forelimb. Thus nogo-ab and ngr1 play a modulated role in limiting CNS axonal growth across a spectrum of different tracts in various lesion models.
-
Comparative Study
A circadian clock in the olfactory bulb controls olfactory responsivity.
Recently, it has been shown that multiple mammalian cell types express daily rhythms in vitro. Although the suprachiasmatic nucleus (SCN) of the hypothalamus is known to regulate a wide range of circadian behaviors, the role for intrinsic rhythmicity in other tissues is unknown. We tested whether the main olfactory bulb (OB) of mice mediates daily changes in olfaction. ⋯ Furthermore, removal of the OB abolished spontaneous circadian cycling of c-Fos in the PC, shortened the free-running period of locomotor rhythms, and accelerated re-entrainment after a 6 h advance and slowed re-entrainment after a 6 h delay in the light schedule. OB ablation or odorant altered the amplitude of c-Fos rhythms in the SCN and ablation of one OB abolished c-Fos rhythms in the ipsilateral PC, but not in the contralateral OB and PC. We conclude that the OB comprises a master circadian pacemaker, which enhances olfactory responsivity each night, drives rhythms in the PC, and interacts with the SCN to coordinate other daily behaviors.