The Journal of neuroscience : the official journal of the Society for Neuroscience
-
The transient receptor potential vanilloid 4 (TRPV4) contributes to mechanical hyperalgesia of diverse etiologies, presumably as part of a mechanoreceptor signaling complex (Alessandri-Haber et al., 2008). To investigate the hypothesis that a functional interaction between TRPV4 and stretch-activated ion channels (SACs) is involved in this mechanical transduction mechanism, we used a selective SACs inhibitor, GsMTx-4. Intradermal injection of GsMTx-4 in the rat hindpaw reversed the mechanical hyperalgesia induced by intradermal injection of inflammatory mediators. ⋯ Spinal intrathecal administration of oligodeoxynucleotides antisense to TRPC1 and TRPC6, like that to TRPV4, reversed the hyperalgesia to mechanical and hypotonic stimuli induced by inflammatory mediators without affecting baseline mechanical nociceptive threshold. However, antisense to TRPC6, but not to TRPC1, reversed the mechanical hyperalgesia induced by a thermal injury or the TRPV4-selective agonist 4alpha-PDD (4 alpha-phorbol 12,13-didecanoate). We conclude that TRPC1 and TRPC6 channels cooperate with TRPV4 channels to mediate mechanical hyperalgesia and primary afferent nociceptor sensitization, although they may have distinctive roles.
-
Myelin-associated glycoprotein (MAG) is a sialic acid-binding Ig-family lectin that functions in neuronal growth inhibition and stabilization of axon-glia interactions. The ectodomain of MAG is comprised of five Ig-like domains and uses neuronal cell-type-specific mechanisms to signal growth inhibition. We show that the first three Ig-like domains of MAG bind with high affinity and in a sialic acid-dependent manner to the Nogo-66 receptor-1 (NgR1) and its homolog NgR2. ⋯ A chimeric Nogo receptor variant (NgR(OMNI)) in which Cys(309)-Cys(336) is deleted and followed by a 13 aa MAG-binding motif of the NgR2 stalk, shows superior binding of OMgp, Nogo-66, and MAG compared with wild-type NgR1 or NgR2. Soluble NgR(OMNI) (NgR(OMNI)-Fc) binds strongly to membrane-bound inhibitors and promotes neurite outgrowth on both MAG and CNS myelin substrates. Thus, NgR(OMNI)-Fc may offer therapeutic opportunities following nervous system injury or disease where myelin inhibits neuronal regeneration.
-
Cortical networks generate temporally correlated brain activity. To clarify the functional significance of this correlated activity, we asked whether and how its structure depends on stimulus and arousal state. ⋯ Network complexity ranged from bilateral single-node networks to networks comprising multiple discrete nodes distributed over 3 cm of cortex; one network identified in our survey included parts of the temporal parietal occipital junction, dorsal premotor cortex, insula, and posterior cingulate cortex bilaterally. Our results reveal the wealth of spatially structured correlated networks throughout the brain in both alert and anesthetized monkeys, and show that anesthesia significantly alters the spatial structure of these networks.
-
The influential model on visual information processing by Milner and Goodale (1995) has suggested a dissociation between action- and perception-related processing in a dorsal versus ventral stream projection. It was inspired substantially by the observation of a double dissociation of disturbed visual action versus perception in patients with optic ataxia on the one hand and patients with visual form agnosia (VFA) on the other. Unfortunately, almost all cases with VFA reported so far suffered from inhalational intoxication, the majority with carbon monoxide (CO). ⋯ S. showed an obvious dissociation between disturbed visual perception of shape and orientation information on the one side and preserved visuomotor abilities based on the same information on the other. In both hemispheres, damage primarily affected the fusiform and the lingual gyri as well as the adjacent posterior cingulate gyrus. We conclude that these medial structures of the ventral occipitotemporal cortex are integral for the normal flow of shape and of contour information into the ventral stream system allowing to recognize objects.
-
The retrotrapezoid "nucleus" (RTN), located in the rostral ventrolateral medullary reticular formation, contains a bilateral cluster of approximately 1000 glutamatergic noncatecholaminergic Phox2b-expressing propriobulbar neurons that are activated by CO(2) in vivo and by acidification in vitro. These cells are thought to function as central respiratory chemoreceptors, but this theory still lacks a crucial piece of evidence, namely that stimulating these particular neurons selectively in vivo increases breathing. The present study performed in anesthetized rats seeks to test whether this expectation is correct. ⋯ Selective lesions of the C1 cells eliminated the cardiovascular response but left the respiratory stimulation intact. In rats with C1 cell lesions, the mCherry-labeled axon terminals originating from the transfected noncatecholaminergic neurons were present exclusively in the lower brainstem regions that contain the respiratory pattern generator. These results provide strong evidence that the Phox2b-expressing noncatecholaminergic neurons of the RTN region function as central respiratory chemoreceptors.