The Journal of neuroscience : the official journal of the Society for Neuroscience
-
The importance of white matter (WM) injury to stroke pathology has been underestimated in experimental animal models and this may have contributed to the failure to translate potential therapeutics into the stroke clinic. Histone deacetylase (HDAC) inhibitors are neuroprotective and also promote neurogenesis. These properties make them ideal candidates for stroke therapy. ⋯ This protection correlates with the upregulation of an astrocyte glutamate transporter, delayed and reduced glutamate accumulation during OGD, preservation of axonal mitochondria and oligodendrocytes, and maintenance of ATP levels. Interestingly, the expression of HDACs 1, 2, and 3 is localized to astrocytes, suggesting that changes in glial cell gene transcription and/or protein acetylation may confer protection to axons. Our findings suggest that a therapeutic opportunity exists for the use of HDAC inhibitors, targeting mitochondrial energy regulation and excitotoxicity in ischemic WM injury.
-
Past studies of shape coding in visual cortical area V4 have demonstrated that neurons can accurately represent isolated shapes in terms of their component contour features. However, rich natural scenes contain many partially occluded objects, which have "accidental" contours at the junction between the occluded and occluding objects. These contours do not represent the true shape of the occluded object and are known to be perceptually discounted. ⋯ Control experiments demonstrated that these results likely depend on contour geometry at T-junctions and cannot be attributed to mechanisms based solely on local color/luminance contrast, spatial proximity of stimuli, or the spatial frequency content of images. Our findings provide novel insights into how occluded objects, which are fundamental to complex visual scenes, are encoded in area V4. They also raise the possibility that the weakened encoding of accidental contours at the junction between objects could mark the first step of image segmentation along the ventral visual pathway.
-
Painful nerve injury disrupts levels of cytoplasmic and stored Ca(2+) in sensory neurons. Since influx of Ca(2+) may occur through store-operated Ca(2+) entry (SOCE) as well as voltage- and ligand-activated pathways, we sought confirmation of SOCE in sensory neurons from adult rats and examined whether dysfunction of SOCE is a possible pathogenic mechanism. Dorsal root ganglion neurons displayed a fall in resting cytoplasmic Ca(2+) concentration when bath Ca(2+) was withdrawn, and a subsequent elevation of cytoplasmic Ca(2+) concentration (40 ± 5 nm) when Ca(2+) was reintroduced, which was amplified by store depletion with thapsigargin (1 μm), and was significantly reduced by blockers of SOCE, but was unaffected by antagonists of voltage-gated membrane Ca(2+) channels. ⋯ Axonal injury by spinal nerve ligation (SNL) elevated SOCE and I(CRAC). However, SOCE was comparable in injured and control neurons when stores were maximally depleted by thapsigargin, and STIM1 and Orai1 levels were not altered by SNL, showing that upregulation of SOCE after SNL is driven by store depletion. Blockade of SOCE increased neuronal excitability in control and injured neurons, whereas injured neurons showed particular dependence on SOCE for maintaining levels of cytoplasmic and stored Ca(2+), which indicates a compensatory role for SOCE after injury.
-
Language and music exhibit similar acoustic and structural properties, and both appear to be uniquely human. Several recent studies suggest that speech and music perception recruit shared computational systems, and a common substrate in Broca's area for hierarchical processing has recently been proposed. However, this claim has not been tested by directly comparing the spatial distribution of activations to speech and music processing within subjects. ⋯ Broca's area was not robustly activated by any stimulus type. Overall, these findings suggest that basic hierarchical processing for music and speech recruits distinct cortical networks, neither of which involves Broca's area. We suggest that previous claims are based on data from tasks that tap higher-order cognitive processes, such as working memory and/or cognitive control, which can operate in both speech and music domains.
-
The cerebellum is reliably activated during both acute and chronic pain conditions, but it is unclear whether the response to aversive painful stimuli can be generalized to other aversive stimuli. We hypothesized that cerebellar activation during pain reflects higher-level encoding of aversive stimuli. We used functional magnetic resonance imaging (fMRI) to compare cerebellar responses in 11 healthy volunteers to noxious heat (46 °C) applied to the hand and to the passive viewing of images selected from the International Affective Picture System. ⋯ Heat-specific functional connectivity was detected in many regions including primary motor cortex, secondary somatosensory cortex, anterior insula, and the periaqueductal gray. The overlap between cerebellar lobuli reactive to noxious heat and passive viewing of unpleasant images suggest that the cerebellum may contain specific regions involved in encoding generalized aversive processing. The separate cortical networks suggest that noxious heat-evoked responses in the cerebellum can be divided into sensorimotor and emotional networks.