The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Intracellular tau aggregates are the neuropathological hallmark of several neurodegenerative diseases, including Alzheimer's disease, progressive supranuclear palsy, and cases of frontotemporal dementia, but the link between these aggregates and neurodegeneration remains unclear. Neuronal models recapitulating the main features of tau pathology are necessary to investigate the molecular mechanisms of tau malfunction, but current models show little and inconsistent spontaneous tau aggregation. We show that dorsal root ganglion (DRG) neurons in transgenic mice expressing human P301S tau (P301S-htau) develop tau pathology similar to that found in brain and spinal cord and a significant reduction in mechanosensation occurs before detectable fibrillar tau formation. ⋯ Neurons cultured at advanced stages of tau pathology showed a 60% decrease in the fraction of moving mitochondria. SEG28019, a novel O-GlcNAcase inhibitor, reduced steady-state pSer396/pSer404 phosphorylation over 7 weeks in a significant proportion of DRG neurons showing for the first time the possible beneficial effect of prolonged dosing of O-GlcNAcase inhibitor in vitro. Our system is unique in that fibrillar tau forms without external manipulation and provides an important new tool for understanding the mechanisms of tau dysfunction and for screening of compounds for treatment of tauopathies.
-
KIF5B promotes the forward transport and axonal function of the voltage-gated sodium channel Nav1.8.
Nav1.8 is a tetrodotoxin-resistant voltage-gated sodium channel selectively expressed in primary sensory neurons. Peripheral inflammation and nerve injury induce Nav1.8 accumulation in peripheral nerves. However, the mechanisms and related significance of channel accumulation in nerves remains unclear. ⋯ In addition, coimmunoprecipitation experiments showed interactions between the N terminus of Nav1.8 and the 511-620 aa sequence in the stalk domain of KIF5B. Furthermore, KIF5B increased Nav1.8 accumulation, Nav1.8 current, and neuronal excitability detected in the axons of cultured DRG neurons, which were completely abolished by the disruption of interactions between KIF5B and the N terminus of Nav1.8. Therefore, our results reveal that KIF5B is required for the forward transport and axonal function of Nav1.8, suggesting a mechanism for axonal accumulation of Nav1.8 in inflammatory pain.
-
Episodic memory deficit is a common cognitive disorder in human temporal lobe epilepsy (TLE). However, no animal model of TLE has been shown to specifically replicate this cognitive dysfunction, which has limited its translational appeal. Here, using a task that tests for nonverbal correlates of episodic-like memory in rats, we show that kainate-treated TLE rats exhibit a selective impairment of the "what-where-when" memory while preserving other forms of hippocampal-dependent memories. ⋯ This disruption represented a basal condition of the chronic epileptic hippocampus that was linked to different features of memory impairment. Theta power was more correlated with the spatial than with the temporal component of the task, while measures of theta coordination correlated with the temporal component. We conclude that episodic-like memory, as tested in the what-where-when task, is specifically affected in experimental TLE and that the impairment of hippocampal theta activity might be central to this dysfunction.
-
Postoperative cognitive dysfunction (POCD) is associated with impairments in daily functioning, and increased morbidity and mortality. However, the causes and neuropathogenesis of POCD remain largely unknown. Uncontrolled pain often occurs postoperatively. ⋯ Finally, eutectic mixture of local anesthetics and CDK5 inhibitor, roscovitine, attenuated the surgical incision-induced reduction in the synaptic NMDA receptor 2B levels and learning impairment. These results suggested that surgical incision-induced nociception reduced the synaptic NMDA receptor 2B level in the medial prefrontal cortex of mice, which might lead to hippocampus-independent learning impairment, contributing to POCD. These findings call for further investigation to determine the role of surgical incision-induced nociception in POCD.