The Journal of neuroscience : the official journal of the Society for Neuroscience
-
During overground or treadmill walking, the stance phase and cycle durations are reduced as speed increases, whereas swing phase duration remains relatively invariant. When the speed of the left and right sides is unequal, as is the case during split-belt locomotion or when walking along a circular path, adjustments in stance and swing phases are observed, which could alter the phase/cycle duration relationships. Here, we tested this hypothesis in the left and right hindlimbs of four intact and two chronic spinal-transected adult cats during tied-belt (i.e., equal left and right speeds) and split-belt (i.e., unequal left and right speeds) walking. ⋯ In contrast, in the constant limb, the slope of the phase/cycle duration relationships for the stance/extension phase decreased, whereas that of the swing/flexion phase increased. The results were qualitatively similar in intact and spinal-transected cats, indicating that the modulation was mediated within the spinal cord. In conclusion, we propose that neuronal networks within the spinal cord that control left and right hindlimb locomotion can differentially and simultaneously modulate phase variations when the two sides walk at different speeds.
-
Fractalkine (FKN) signaling is involved in mechanical allodynia in the facial skin following trapezius muscle inflammation. Complete Freund's adjuvant (CFA) injection into the trapezius muscle produced mechanical allodynia in the ipsilateral facial skin that was not associated with facial skin inflammation and resulted in FKN but not FKN receptor (CX3CR1) expression, and microglial activation was enhanced in trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal cord (C1-C2). Intra-cisterna magna anti-CX3CR1 or anti-interleukin (IL)-1β neutralizing antibody administration decreased the enhanced excitability of Vc and C1-C2 neurons in CFA-injected rats, whereas intra-cisterna magna FKN administration induced microglial activation and mechanical allodynia in the facial skin. ⋯ The excitability of neurons whose receptive fields was located in the facial skin was significantly enhanced in CFA-injected rats, and the number of cells expressing phosphorylated extracellular signal-regulated kinase (pERK) following noxious mechanical stimulation of the facial skin was significantly increased in Vc and C1-C2. We also observed mechanical allodynia of the trapezius muscle as well as microglial activation and increased pERK expression in C2-C6 after noxious stimulation of the trapezius muscle in facial skin-inflamed rats. These findings suggest that FKN expression was enhanced in Vc and C1-C2 or C2-C6 following trapezius muscle or facial skin inflammation, microglia are activated via FKN signaling, IL-1β is released from the activated microglia, and the excitability of neurons in Vc and C1-C2 or C2-C6 is enhanced, resulting in the ectopic mechanical allodynia.
-
Neuropathic pain, a chronic pain due to neuronal lesion, remains unaltered even after the injury-induced spinal afferent discharges have declined, suggesting an involvement of supraspinal dysfunction. The midbrain ventrolateral periaqueductal gray (vlPAG) is known to be a crucial supraspinal region for initiating descending pain inhibition, but its role in neuropathic pain remains unclear. Therefore, here we examined neuroplastic changes in the vlPAG of midbrain slices isolated from neuropathic rats induced by L5/L6 spinal nerve ligation (SNL) via electrophysiological and neurochemical approaches. ⋯ These results suggest that SNL leads to hypoglutamatergic neurotransmission in the vlPAG resulting from both presynaptic and postsynaptic mechanisms. Upregulation of NMDARs might contribute to hypofunction of AMPARs via subcellular redistribution. Long-term hypoglutamatergic function in the vlPAG may lead to persistent reduction of descending pain inhibition, resulting in chronic neuropathic pain.