The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Neural circuits maintain a precise organization that is vital for normal brain functions and behaviors, but become disrupted during neurological disease. Understanding the connection between wiring accuracy and function to measure disease progression or recovery has been difficult because of the complexity of behavioral circuits. The olfactory system maintains well-defined neural connections that regenerate throughout life. ⋯ Interestingly, the degree of functional recovery tracked directly with circuit restoration. Together, these data demonstrate that hAPP-induced circuit disruption and subsequent recovery can occur rapidly and that behavior can provide a measure of circuit organization. Thus, olfaction may serve as a useful biomarker to both follow disease progression and gauge potential recovery.
-
The rising proportion of elderly people worldwide will yield an increased incidence of age-associated cognitive impairments, imposing major burdens on societies. Consequently, growing interest emerged to evaluate new strategies to delay or counteract cognitive decline in aging. Here, we assessed immediate effects of anodal transcranial direct current stimulation (atDCS) on cognition and previously described detrimental changes in brain activity attributable to aging. ⋯ RS-fMRI revealed enhanced anterior and reduced posterior functional brain connectivity. atDCS significantly improved performance in older adults up to the level of younger controls; significantly reduced task-related hyperactivity in bilateral prefrontal cortices, the anterior cingulate gyrus, and the precuneus; and induced a more "youth-like" connectivity pattern during RS-fMRI. Our results provide converging evidence from behavioral analysis and two independent functional imaging paradigms that a single session of atDCS can temporarily reverse nonbeneficial effects of aging on cognition and brain activity and connectivity. These findings may translate into novel treatments to ameliorate cognitive decline in normal aging in the future.
-
Gamma frequency (30-80 Hz) oscillations are implicated in memory processing. Such rhythmic activity can be generated intrinsically in the CA3 region of the hippocampus from where it can propagate to the CA1 area. To uncover the synaptic mechanisms underlying the intrahippocampal spread of gamma oscillations, we recorded local field potentials, as well as action potentials and synaptic currents in anatomically identified CA1 and CA3 neurons during carbachol-induced gamma oscillations in mouse hippocampal slices. ⋯ The firing of phase-coupled CA1 pyramidal cells was controlled principally by their inhibitory inputs, which dominated over excitation. Our results indicate that the synchronous firing of CA3 pyramidal cells rhythmically recruits CA1 interneurons and that this feedforward inhibition generates the oscillatory activity in CA1. These findings identify distinct synaptic mechanisms underlying the generation of gamma frequency oscillations in neighboring hippocampal subregions.
-
Chronic pain associated with injury or disease can result from dysfunction of sensory afferents whereby the threshold for activation of pain-sensing neurons (nociceptors) is lowered. Neurotrophic factors control nociceptor development and survival, but also induce sensitization through activation of their cognate receptors, attributable, in part, to the modulation of ion channel function. Thermal pain is mediated by channels of the transient receptor potential (TRP) family, including the cold and menthol receptor TRPM8. ⋯ Nerve growth factor induced mild cold sensitization, consistent with TrkA expression in TRPM8 neurons. However, bradykinin failed to alter cold sensitivity even though its receptor expresses in a subset of TRPM8 neurons. These results show for the first time that only select neurotrophic factors induce cold sensitization through TRPM8 in vivo, unlike the broad range of proalgesic agents capable of promoting heat hyperalgesia.
-
Gait disorders in parkinsonian monkeys with pedunculopontine nucleus lesions: a tale of two systems.
Gait and balance disorders unresponsive to dopaminergic drugs in Parkinson's disease (PD) are secondary to lesions located outside the dopaminergic system. However, available animal models of PD fail to display l-3,4-dihydroxyphenylalanine (DOPA)-responsive parkinsonism and drug-resistant gait and balance disorders, and this lack of appropriate model could account for the deficit of efficient treatments. Because the pedunculopontine nucleus (PPN) plays an important role in locomotion control, we conducted the present study to investigate the consequences of combined dopaminergic and PPN lesions in a same animal. ⋯ We observed similar results in aged monkeys intoxicated with MPTP: they developed severe DOPA-responsive hypokinesia and tremor together with unresponsive gait and balance disorders and displayed dopaminergic lesion and a weak but significant cholinergic PPN lesion. Our results highlight the complex role of the cholinergic PPN neurons in the pathophysiology of PD because its lesion induces a dual effect with an improvement of hypokinesia contrasting with a worsening of DOPA-unresponsive gait and balance disorders. Thus, we obtained a primate model of PD that could be useful to test symptomatic treatments for these heavily disabling symptoms.