The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Communication is fundamental for our understanding of behavior. In the acoustic modality, natural scenes for communication in humans and animals are often very noisy, decreasing the chances for signal detection and discrimination. We investigated the mechanisms enabling selective hearing under natural noisy conditions for auditory receptors and interneurons of an insect. ⋯ Using intracellular recording techniques we identified two neural mechanisms underlying the surprising behavioral signal detection at the level of single identified interneurons. These neural mechanisms for signal detection are likely to be important for other sensory modalities as well, where noise in the communication channel creates similar problems. Also, they may be used for the development of algorithms for the filtering of specific signals in technical microphones or hearing aids.
-
Neuroimaging biomarkers, namely hippocampal volume loss, temporoparietal hypometabolism, and neocortical β-amyloid (Aβ) deposition, are included in the recent research criteria for preclinical Alzheimer's disease (AD). However, how to use these biomarkers is still being debated, especially regarding their sequence. Our aim was to characterize the cognitive and brain profiles of elders classified as positive or negative for each biomarker to further our understanding of their use in the preclinical diagnosis of AD. ⋯ Our findings suggest that MRI and FDG-PET biomarkers should be used in combination, offering an additive contribution instead of reflecting the same process of neurodegeneration. Moreover, the present study also challenges the hierarchical use of the neuroimaging biomarkers in preclinical AD because it suggests that the neurodegeneration observed in this population is not due to β-amyloid deposition. Rather, our results suggest that β-amyloid- and tau-related pathological processes may interact but not necessarily appear in a systematic sequence.
-
Lysophosphatidic acid (LPA) is an extracellular lipid mediator involved in many physiological functions that signals through six known G-protein-coupled receptors (LPA1-LPA6). A wide range of LPA effects have been identified in the CNS, including neural progenitor cell physiology, astrocyte and microglia activation, neuronal cell death, axonal retraction, and development of neuropathic pain. However, little is known about the involvement of LPA in CNS pathologies. Herein, we demonstrate for the first time that LPA signaling via LPA1 contributes to secondary damage after spinal cord injury. LPA levels increase in the contused spinal cord parenchyma during the first 14 d. To model this potential contribution of LPA in the spinal cord, we injected LPA into the normal spinal cord, revealing that LPA induces microglia/macrophage activation and demyelination. Use of a selective LPA1 antagonist or mice lacking LPA1 linked receptor-mediated signaling to demyelination, which was in part mediated by microglia. Finally, we demonstrate that selective blockade of LPA1 after spinal cord injury results in reduced demyelination and improvement in locomotor recovery. Overall, these results support LPA-LPA1 signaling as a novel pathway that contributes to secondary damage after spinal cord contusion in mice and suggest that LPA1 antagonism might be useful for the treatment of acute spinal cord injury. ⋯ This study reveals that LPA signaling via LPA receptor type 1 activation causes demyelination and functional deficits after spinal cord injury.
-
Synaptic dysfunction is a core deficit in Alzheimer's disease, preceding hallmark pathological abnormalities. Resting-state magnetoencephalography (MEG) was used to assess whether functional connectivity patterns, as an index of synaptic dysfunction, are associated with CSF biomarkers [i.e., phospho-tau (p-tau) and amyloid beta (Aβ42) levels]. We studied 12 human subjects diagnosed with mild cognitive impairment due to Alzheimer's disease, comparing those with normal and abnormal CSF levels of the biomarkers. We also evaluated the association between aberrant functional connections and structural connectivity abnormalities, measured with diffusion tensor imaging, as well as the convergent impact of cognitive deficits and CSF variables on network disorganization. One-third of the patients converted to Alzheimer's disease during a follow-up period of 2.5 years. Patients with abnomal CSF p-tau and Aβ42 levels exhibited both reduced and increased functional connectivity affecting limbic structures such as the anterior/posterior cingulate cortex, orbitofrontal cortex, and medial temporal areas in different frequency bands. A reduction in posterior cingulate functional connectivity mediated by p-tau was associated with impaired axonal integrity of the hippocampal cingulum. We noted that several connectivity abnormalities were predicted by CSF biomarkers and cognitive scores. These preliminary results indicate that CSF markers of amyloid deposition and neuronal injury in early Alzheimer's disease associate with a dual pattern of cortical network disruption, affecting key regions of the default mode network and the temporal cortex. MEG is useful to detect early synaptic dysfunction associated with Alzheimer's disease brain pathology in terms of functional network organization. ⋯ In this preliminary study, we used magnetoencephalography and an integrative approach to explore the impact of CSF biomarkers, neuropsychological scores, and white matter structural abnormalities on neural function in mild cognitive impairment. Disruption in functional connectivity between several pairs of cortical regions associated with abnormal levels of biomarkers, cognitive deficits, or with impaired axonal integrity of hippocampal tracts. Amyloid deposition and tau protein-related neuronal injury in early Alzheimer's disease are associated with synaptic dysfunction and a dual pattern of cortical network disorganization (i.e., desynchronization and hypersynchronization) that affects key regions of the default mode network and temporal areas.
-
Traumatic brain injury (TBI) often results in traumatic axonal injury and white matter (WM) damage, particularly to the corpus callosum (CC). Damage to the CC can lead to impaired performance on neurocognitive tasks, but there is a high degree of heterogeneity in impairment following TBI. Here we examined the relation between CC microstructure and function in pediatric TBI. We used high angular resolution diffusion-weighted imaging (DWI) to evaluate the structural integrity of the CC in humans following brain injury in a sample of 32 children (23 males and 9 females) with moderate-to-severe TBI (msTBI) at 1-5 months postinjury, compared with well matched healthy control children. We assessed CC function through interhemispheric transfer time (IHTT) as measured using event-related potentials (ERPs), and related this to DWI measures of WM integrity. Finally, the relation between DWI and IHTT results was supported by additional results of neurocognitive performance assessed using a single composite performance scale. Half of the msTBI participants (16 participants) had significantly slower IHTTs than the control group. This slow IHTT group demonstrated lower CC integrity (lower fractional anisotropy and higher mean diffusivity) and poorer neurocognitive functioning than both the control group and the msTBI group with normal IHTTs. Lower fractional anisotropy-a common sign of impaired WM-and slower IHTTs also predicted poor neurocognitive function. This study reveals that there is a subset of pediatric msTBI patients during the post-acute phase of injury who have markedly impaired CC functioning and structural integrity that is associated with poor neurocognitive functioning. ⋯ Traumatic brain injury (TBI) is the primary cause of death and disability in children and adolescents. There is considerable heterogeneity in postinjury outcome, which is only partially explained by injury severity. Imaging biomarkers may help explain some of this variance, as diffusion weighted imaging is sensitive to the white matter disruption that is common after injury. The corpus callosum (CC) is one of the most commonly reported areas of disruption. In this multimodal study, we discovered a divergence within our pediatric moderate-to-severe TBI sample 1-5 months postinjury. A subset of the TBI sample showed significant impairment in CC function, which is supported by additional results showing deficits in CC structural integrity. This subset also had poorer neurocognitive functioning. Our research sheds light on postinjury heterogeneity.