The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Spinal plasticity, a key process mediating neuropathic pain development, requires ubiquitination-dependent protein turnover. Presynaptic active zone proteins have a crucial role in regulating vesicle exocytosis, which is essential for synaptic plasticity. Nevertheless, the mechanism for ubiquitination-regulated turnover of presynaptic active zone proteins in the progression of spinal plasticity-associated neuropathic pain remains unclear. Here, after research involving Sprague Dawley rats, we reported that spinal nerve ligation (SNL), in addition to causing allodynia, enhances the Rab3-interactive molecule-1α (RIM1α), a major active zone protein presumed to regulate neural plasticity, specifically in the synaptic plasma membranes (SPMs) of the ipsilateral dorsal horn. Spinal RIM1α-associated allodynia was mediated by Fbxo3, which abates Fbxl2-dependent RIM1α ubiquitination. Subsequently, following deubiquitination, enhanced RIM1α directly binds to CaV2.2, resulting in increased CaV2.2 expression in the SPMs of the dorsal horn. While exhibiting no effect on Fbxo3/Fbxl2 signaling, the focal knockdown of spinal RIM1α expression reversed the SNL-induced allodynia and increased spontaneous EPSC (sEPSC) frequency by suppressing RIM1α-facilitated CaV2.2 expression in the dorsal horn. Intrathecal applications of BC-1215 (a Fbxo3 activity inhibitor), Fbxl2 mRNA-targeting small-interfering RNA, and ω-conotoxin GVIA (a CaV2.2 blocker) attenuated RIM1α upregulation, enhanced RIM1α expression, and exhibited no effect on RIM1α expression, respectively. These results confirm the prediction that spinal presynaptic Fbxo3-dependent Fbxl2 ubiquitination promotes the subsequent RIM1α/CaV2.2 cascade in SNL-induced neuropathic pain. Our findings identify a role of the presynaptic active zone protein in pain-associated plasticity. That is, RIM1α-facilitated CaV2.2 expression plays a role in the downstream signaling of Fbxo3-dependent Fbxl2 ubiquitination/degradation to promote spinal plasticity underlying the progression of nociceptive hypersensitivity following neuropathic injury. ⋯ Ubiquitination is a well known process required for protein degradation. Studies investigating pain pathology have demonstrated that ubiquitination contributes to chronic pain by regulating the turnover of synaptic proteins. Here, we found that the spinal presynaptic active zone protein Rab3-interactive molecule-1α (RIM1α) participates in neuropathic pain development by binding to and upregulating the expression of CaV2.2. In addition, Fbxo3 modifies this pathway by inhibiting Fbxl2-mediated RIM1α ubiquitination, suggesting that presynaptic protein ubiquitination makes a crucial contribution to the development of neuropathic pain. Research in this area, now in its infancy, could potentially provide a novel therapeutic strategy for pain relief.
-
Interactions between the prefrontal cortex (PFC) and basolateral amygdala (BLA) regulate emotional behaviors. However, a circuit-level understanding of functional connections between these brain regions remains incomplete. The BLA sends prominent glutamatergic projections to the PFC, but the overall influence of these inputs is predominantly inhibitory. Here we combine targeted recordings and optogenetics to examine the synaptic underpinnings of this inhibition in the mouse infralimbic PFC. We find that BLA inputs preferentially target layer 2 corticoamygdala over neighboring corticostriatal neurons. However, these inputs make even stronger connections onto neighboring parvalbumin and somatostatin expressing interneurons. Inhibitory connections from these two populations of interneurons are also much stronger onto corticoamygdala neurons. Consequently, BLA inputs are able to drive robust feedforward inhibition via two parallel interneuron pathways. Moreover, the contributions of these interneurons shift during repetitive activity, due to differences in short-term synaptic dynamics. Thus, parvalbumin interneurons are activated at the start of stimulus trains, whereas somatostatin interneuron activation builds during these trains. Together, these results reveal how the BLA impacts the PFC through a complex interplay of direct excitation and feedforward inhibition. They also highlight the roles of targeted connections onto multiple projection neurons and interneurons in this cortical circuit. Our findings provide a mechanistic understanding for how the BLA can influence the PFC circuit, with important implications for how this circuit participates in the regulation of emotion. ⋯ The prefrontal cortex (PFC) and basolateral amygdala (BLA) interact to control emotional behaviors. Here we show that BLA inputs elicit direct excitation and feedforward inhibition of layer 2 projection neurons in infralimbic PFC. BLA inputs are much stronger at corticoamygdala neurons compared with nearby corticostriatal neurons. However, these inputs are even more powerful at parvalbumin and somatostatin expressing interneurons. BLA inputs thus activate two parallel inhibitory networks, whose contributions change during repetitive activity. Finally, connections from these interneurons are also more powerful at corticoamygdala neurons compared with corticostriatal neurons. Together, our results demonstrate how the BLA predominantly inhibits the PFC via a complex sequence involving multiple cell-type and input-specific connections.
-
Synchronous optogenetic activation of striatal cholinergic interneurons ex vivo produces a disynaptic inhibition of spiny projection neurons composed of biophysically distinct GABAAfast and GABAAslow components. This has been shown to be due, at least in part, to activation of nicotinic receptors on GABAergic NPY-neurogliaform interneurons that monosynaptically inhibit striatal spiny projection neurons. Recently, it has been proposed that a significant proportion of this inhibition is actually mediated by activation of presynaptic nicotinic receptors on nigrostriatal terminals that evoke GABA release from the terminals of the dopaminergic nigrostriatal pathway. To disambiguate these the two mechanisms, we crossed mice in which channelrhodopsin is endogenously expressed in cholinergic neurons with Htr3a-Cre mice, in which Cre is selectively targeted to several populations of striatal GABAergic interneurons, including the striatal NPY-neurogliaform interneuron. Htr3a-Cre mice were then virally transduced to express halorhodopsin to allow activation of channelrhodopsin and halorhodopsin, individually or simultaneously. Thus we were able to optogenetically disconnect the interneuron-spiny projection neuron (SPN) cell circuit on a trial-by-trial basis. As expected, optogenetic activation of cholinergic interneurons produced inhibitory currents in SPNs. During simultaneous inhibition of GABAergic interneurons with halorhodopsin, we observed a large, sometimes near complete reduction in both fast and slow components of the cholinergic-evoked inhibition, and a delay in IPSC latency. This demonstrates that the majority of cholinergic-evoked striatal GABAergic inhibition is derived from GABAergic interneurons. These results also reinforce the notion that a semiautonomous circuit of striatal GABAergic interneurons is responsible for transmitting behaviorally relevant cholinergic signals to spiny projection neurons. ⋯ The circuitry between neurons of the striatum has been recently described to be far more complex than originally imagined. One example of this phenomenon is that striatal cholinergic interneurons have been shown to provide intrinsic nicotinic excitation of local GABAergic interneurons, which then inhibit the projection neurons of the striatum. As deficits of cholinergic interneurons are reported in patients with Tourette syndrome, the normal functions of these interneurons are of great interest. Whether this novel route of nicotinic input constitutes a major output of cholinergic interneurons remains unknown. The study addressed this question using excitatory and inhibitory optogenetic technology, so that cholinergic interneurons could be selectively activated and GABAergic interneurons selectively inhibited to determine the causal relationship in this circuit.