The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Impairments in social interaction represent a core symptom of a number of psychiatric disease states, including autism, schizophrenia, depression, and anxiety. Although the amygdala has long been linked to social interaction, little is known about the functional role of connections between the amygdala and downstream regions in noncompetitive social behavior. In the present study, we used optogenetic and pharmacological tools in mice to study the role of projections from the basolateral complex of the amygdala (BLA) to the ventral hippocampus (vHPC) in two social interaction tests: the resident-juvenile-intruder home-cage test and the three chamber sociability test. ⋯ NpHR-mediated inhibition of BLA-vHPC projections significantly increased social interaction in the resident-juvenile intruder home-cage test as shown by increased intruder exploration. In contrast, ChR2-mediated activation of BLA-vHPC projections significantly reduced social behaviors as shown in the resident-juvenile intruder procedure as seen by decreased time exploring the intruder and in the three chamber sociability test by decreased time spent in the social zone. These results indicate that BLA inputs to the vHPC are capable of modulating social behaviors in a bidirectional manner.
-
Partial injury to the corticospinal tract (CST) causes sprouting of intact axons at their targets, and this sprouting correlates with functional improvement. Electrical stimulation of motor cortex augments sprouting of intact CST axons and promotes functional recovery when applied soon after injury. We hypothesized that electrical stimulation of motor cortex in the intact hemisphere after chronic lesion of the CST in the other hemisphere would restore function through ipsilateral control. ⋯ In rats with injury and stimulation, but not those with injury alone, inactivation caused worsening of forelimb function; the initial deficit was reinstated. These results demonstrate that electrical stimulation can promote recovery of motor function when applied late after injury and that motor control can be exerted from the ipsilateral motor cortex. These results suggest that the uninjured motor cortex could be targeted for brain stimulation in people with large unilateral CST lesions.
-
SIP30 (SNAP25 interacting protein of 30) is a SNAP25 interaction protein of 30 kDa that functions in neurotransmitter release. Using a chronic constriction injury (CCI) model of neuropathic pain, we profiled gene expression in the rat spinal cord and brain and identified sip30, which was upregulated after CCI. Here, we show that CCI induced a bilateral increase of SIP30 in the rostral anterior cingulate cortex (rACC), a key brain region that has been implicated in pain affect. ⋯ Intra-rACC administration of PKA or ERK inhibitors suppressed CCI-induced SIP30 upregulation and blocked the induction of PEAP. Additionally, knockdown of SIP30 suppressed the frequency of mEPSCs and increased paired-pulse ratios in rACC slices and decreased extracellular glutamate concentrations. Together, our results highlight SIP30 as a target of PKA and ERK in the rACC to mediate neuropathic pain-evoked negative emotion via modulation of glutamate release and excitatory synaptic transmission.
-
Startling acoustic stimuli (SAS) can accelerate reaction times ("StartReact" effect), but the underlying mechanism remains unclear. Both direct release of a subcortically stored motor program and a subcortically mediated trigger for a cortically stored motor program have been hypothesized. To distinguish between these hypotheses, we examined the StartReact effect in humans with pure hereditary spastic paraplegia (HSP). ⋯ The reticulospinal tract seems unaffected in HSP patients, because startle reflex onsets were normal. The corticospinal tract was affected, as reflected by delayed ankle dorsiflexion reaction times. These delayed onsets in HSP were normalized when the imperative stimulus was combined with a SAS, presumably through release of a subcortically stored motor program conveyed by the preserved reticulospinal tract.
-
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease that leads invariably to fatal paralysis associated with motor neuron degeneration and muscular atrophy. One gene associated with ALS encodes the DNA/RNA-binding protein Fused in Sarcoma (FUS). There now exist two Drosophila models of ALS. ⋯ Furthermore, the frequency but not unitary amplitude of spontaneous miniature synaptic currents is decreased dramatically in FUS-ALS flies, consistent with a change in quantal content but not quantal size. Although standard confocal microscopic analysis of the larval neuromuscular junction reveals no gross abnormalities, superresolution stimulated emission depletion (STED) microscopy demonstrates that the presynaptic active zone protein bruchpilot is aberrantly organized in FUS-ALS larvae. The results are consistent with the idea that defects in presynaptic terminal structure and function precede, and may contribute to, the later motor neuron degeneration that is characteristic of ALS.