The Journal of neuroscience : the official journal of the Society for Neuroscience
-
It remains unclear to what extent retinotopic maps can undergo large-scale plasticity following damage to human visual cortex. The literature has predominately focused on retinotopic changes in patients with retinal pathologies or congenital brain malformations. Yet, damage to the adult visual cortex itself is common in cases such as stroke, tumor, or trauma. ⋯ Both adult-onset cases had direct damage to early visual cortex itself (rather than to the afferent drive only), resulting in a mostly nonfunctional hemisphere. The congenital case had severe cortical malformation of the visual cortex and was acallosal. Our results are consistent with a competitive model in which unilateral damage to visual cortex or disruption of the transcallosal connections removes interhemispheric suppression from retino-geniculate afferents in intact visual cortex that represent the vertical meridian and ipsilateral visual field.
-
Autonomic dysreflexia (AD), a potentially dangerous complication of high-level spinal cord injury (SCI) characterized by exaggerated activation of spinal autonomic (sympathetic) reflexes, can cause pulmonary embolism, stroke, and, in severe cases, death. People with high-level SCI also are immune compromised, rendering them more susceptible to infectious morbidity and mortality. The mechanisms underlying postinjury immune suppression are not known. ⋯ Reversal of postinjury immune suppression in SCI mice can be achieved by pharmacological inhibition of receptors for norepinephrine and glucocorticoids during the onset and progression of AD. In a human subject with C5 SCI, stimulating the micturition reflex caused AD with exaggerated catecholamine release and impaired immune function, thus confirming the relevance of the mouse data. These data implicate AD as a cause of secondary immune deficiency after SCI and reveal novel therapeutic targets for overcoming infectious complications that arise due to deficits in immune function.
-
Spinal cord injury results in distant pathology around putative locomotor networks that may jeopardize the recovery of locomotion. We previously showed that activated microglia and increased cytokine expression extend at least 10 segments below the injury to influence sensory function. Matrix metalloproteinase-9 (MMP-9) is a potent regulator of acute neuroinflammation. ⋯ Neither training nor MMP-9 depletion alone promoted recovery. The same intervention delivered late was ineffective, suggesting that lesion site sparing is insufficient to facilitate activity-based training and recovery. Our work suggests that by attenuating remote mechanisms of inflammation, acute treadmill training can harness endogenous spinal plasticity to promote robust recovery.
-
Chronic pain associated with injury or disease can result from dysfunction of sensory afferents whereby the threshold for activation of pain-sensing neurons (nociceptors) is lowered. Neurotrophic factors control nociceptor development and survival, but also induce sensitization through activation of their cognate receptors, attributable, in part, to the modulation of ion channel function. Thermal pain is mediated by channels of the transient receptor potential (TRP) family, including the cold and menthol receptor TRPM8. ⋯ Nerve growth factor induced mild cold sensitization, consistent with TrkA expression in TRPM8 neurons. However, bradykinin failed to alter cold sensitivity even though its receptor expresses in a subset of TRPM8 neurons. These results show for the first time that only select neurotrophic factors induce cold sensitization through TRPM8 in vivo, unlike the broad range of proalgesic agents capable of promoting heat hyperalgesia.
-
The rising proportion of elderly people worldwide will yield an increased incidence of age-associated cognitive impairments, imposing major burdens on societies. Consequently, growing interest emerged to evaluate new strategies to delay or counteract cognitive decline in aging. Here, we assessed immediate effects of anodal transcranial direct current stimulation (atDCS) on cognition and previously described detrimental changes in brain activity attributable to aging. ⋯ RS-fMRI revealed enhanced anterior and reduced posterior functional brain connectivity. atDCS significantly improved performance in older adults up to the level of younger controls; significantly reduced task-related hyperactivity in bilateral prefrontal cortices, the anterior cingulate gyrus, and the precuneus; and induced a more "youth-like" connectivity pattern during RS-fMRI. Our results provide converging evidence from behavioral analysis and two independent functional imaging paradigms that a single session of atDCS can temporarily reverse nonbeneficial effects of aging on cognition and brain activity and connectivity. These findings may translate into novel treatments to ameliorate cognitive decline in normal aging in the future.