The Journal of neuroscience : the official journal of the Society for Neuroscience
-
As humans are induced into a state of general anesthesia via propofol, the normal alpha rhythm (8-13 Hz) in the occipital cortex disappears and a frontal alpha rhythm emerges. This spatial shift in alpha activity is called anteriorization. We present a thalamocortical model that suggests mechanisms underlying anteriorization. ⋯ The increase in GABA inhibition imposes an alpha timescale on both the cortical and thalamic portions of the frontal component that are reinforced by reciprocal thalamocortical feedback. Anteriorization can thus be understood as a differential effect of anesthetic drugs on thalamic nuclei with disparate spatial projections, i.e.: (1) they disrupt the normal, depolarized alpha in posterior-projecting thalamic nuclei while (2) they engage a new, hyperpolarized alpha in frontothalamic nuclei. Our model generalizes to other anesthetics that include GABA as a target, since the molecular targets of many such anesthetics alter the model dynamics in a manner similar to that of propofol.
-
We have previously shown that activation of protein kinase Cε (PKCε) in male rats induces a chronic, long-lasting change in nociceptors such that a subsequent exposure to proinflammatory mediators produces markedly prolonged mechanical hyperalgesia. This neuroplastic change, hyperalgesic priming, is dependent on activation of cytoplasmic polyadenylation element-binding protein (CPEB), downstream of PKCε, and consequent translation of mRNAs in the peripheral terminal of the nociceptor. Since α calmodulin-dependent protein kinase II (αCaMKII), a molecule implicated in neuroplasticity, is a target of CPEB and can also affect CPEB function, we investigated its role in the transition from acute to chronic pain. ⋯ Similarly, inhibition of the RyR and a calcium buffer prevented induction of priming by PKCε. Unlike activation of PKCε, ryanodine and αCaMKII induced priming in female as well as male rats. Our results demonstrate a contribution of αCaMKII to induction of hyperalgesic priming, a phenomenon implicated in the transition from acute to chronic pain.
-
The p75 neurotrophin receptor (p75(NTR)) is a member of the tumor necrosis factor receptor superfamily with a widespread pattern of expression in tissues such as the brain, liver, lung, and muscle. The mechanisms that regulate p75(NTR) transcription in the nervous system and its expression in other tissues remain largely unknown. Here we show that p75(NTR) is an oscillating gene regulated by the helix-loop-helix transcription factors CLOCK and BMAL1. ⋯ Consistent with this, Per2::Luc/p75(NTR-/-) liver explants showed reduced circadian oscillation amplitude compared with those of Per2::Luc/p75(NTR+/+). Moreover, deletion of p75(NTR) also alters the circadian oscillation of glucose and lipid homeostasis genes. Overall, our findings reveal that the transcriptional activation of p75(NTR) is under circadian regulation in the nervous system and peripheral tissues, and plays an important role in the maintenance of clock and metabolic gene oscillation.
-
Although chronic pain is the most common symptom of arthritis, relatively little is known about the mechanisms driving it. Recently, a sprouting of autonomic sympathetic fibers into the upper dermis of the skin, an area that is normally devoid of them, was found in the skin following chronic inflammation of the rat hindpaw. While this sprouting only occurred when signs of joint and bone damage were present, it remained to be clarified whether it was a consequence of the chronic inflammation of the skin or of the arthritis and whether it also occurred in the joint. ⋯ Guanethidine completely suppressed the heat hyperalgesia and attenuated mechanical and cold hypersensitivity. These results suggest that transmitters released from the sprouted sympathetic fibers in the synovial membrane and upper dermis contribute to the pain-related behavior associated with arthritis. Blocking the sympathetic fiber sprouting may provide a novel therapeutic approach to alleviate pain in arthritis.
-
Bodily injury in mammals often produces persistent pain that is driven at least in part by long-lasting sensitization and spontaneous activity (SA) in peripheral branches of primary nociceptors near sites of injury. While nociceptors have been described in lower vertebrates and invertebrates, outside of mammals there is limited evidence for peripheral sensitization of primary afferent neurons, and there are no reports of persistent SA being induced in primary afferents by noxious stimulation. Cephalopod molluscs are the most neurally and behaviorally complex invertebrates, with brains rivaling those of some vertebrates in size and complexity. ⋯ As in mammals, injury in squid can cause persistent SA in peripheral afferents. Unlike mammals, the afferent sensitization and SA are almost as prominent on the contralateral side of the body as they are near an injury. Thus, while squid exhibit peripheral alterations in afferent neurons similar to those that drive persistent pain in mammals, robust changes far from sites of injury in squid suggest that persistently enhanced afferent activity provides much less information about the location of an injury in cephalopods than it does in mammals.