The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Animals can categorize the environment into "states," defined by unique sets of available action-outcome contingencies in different contexts. Doing so helps them choose appropriate actions and make accurate outcome predictions when in each given state. State maps have been hypothesized to be held in the orbitofrontal cortex (OFC), an area implicated in decision-making and encoding information about outcome predictions. ⋯ Here we tested this idea in detail by analyzing neural activity recorded in OFC of rats performing a task consisting of a series of states, each defined by a set of available action-outcome contingencies. Results show that most OFC neurons contribute to state representations and that these representations are related to the rats' decision-making and OFC reward predictions. These findings suggest new interpretations of emotional dysregulation in pathologies, such as addiction, which have long been known to be related to OFC dysfunction.
-
After damage to the primary visual cortex (V1), conscious vision is impaired. However, some patients can respond to visual stimuli presented in their lesion-affected visual field using residual visual pathways bypassing V1. This phenomenon is called "blindsight." Many studies have tried to identify the brain regions responsible for blindsight, and the pulvinar and/or lateral geniculate nucleus (LGN) are suggested to play key roles as the thalamic relay of visual signals. ⋯ SIGNIFICANCE STATEMENT Many studies have been devoted to understanding the mechanism of mysterious symptom called "blindsight," in which patients with damage to the primary visual cortex (V1) can respond to visual stimuli despite loss of visual awareness. However, there is still a debate on the thalamic relay of visual signals. In this study, to pin down the issue, we tried double dissociation in the same subjects (hemi-blindsight macaque monkeys) and clarified that the lateral geniculate nucleus (LGN) plays a major role in simple visually guided saccades in the intact state, while both pulvinar and LGN critically contribute after the V1 lesioning, suggesting that plasticity in the visual pathway involving the pulvinar underlies the blindsight.
-
Integrating information across different senses is a central feature of human perception. Previous research suggests that multisensory integration is shaped by a context-dependent and largely adaptive interplay between stimulus-driven bottom-up and top-down endogenous influences. One critical question concerns the extent to which this interplay is sensitive to the amount of available cognitive resources. ⋯ We addressed this question using the sound-induced flash illusion (SIFI), a phenomenon in which the integration of two rapid beeps together with a flash induces the illusion of a second flash. Replicating our previous work, we demonstrate that depletion of cognitive resources through a working memory (WM) task increases the perception of the illusion. With respect to the underlying neural processes, we show that when available resources are limited, multisensory integration engages top-down θ and β oscillations.
-
There are significant neurogenic and inflammatory influences on blood pressure, yet the role played by each of these processes in the development of hypertension is unclear. Tumor necrosis factor α (TNFα) has emerged as a critical modulator of blood pressure and neural plasticity; however, the mechanism by which TNFα signaling contributes to the development of hypertension is uncertain. We present evidence that following angiotensin II (AngII) infusion the TNFα type 1 receptor (TNFR1) plays a key role in heightened glutamate signaling in the hypothalamic paraventricular nucleus (PVN), a key central coordinator of blood pressure control. ⋯ Further, TNFR1 activation was essential for NMDA signaling and the heightening NMDA currents during hypertension. Finally, TNFR1 silencing in the PVN inhibits elevated blood pressure induced by AngII. These results point to a critical role for hypothalamic TNFR1 signaling in hypertension.
-
Vagus nerve stimulation (VNS) is widely used to treat drug-resistant epilepsy and depression. While the precise mechanisms mediating its long-term therapeutic effects are not fully resolved, they likely involve locus coeruleus (LC) stimulation via the nucleus of the solitary tract, which receives afferent vagal inputs. In rats, VNS elevates LC firing and forebrain noradrenaline levels, whereas LC lesions suppress VNS therapeutic efficacy. ⋯ Here we show that short (3.4 s) tVNS pulses in naive healthy male volunteers induced transient pupil dilation and attenuation of occipital alpha oscillations. These markers of brain arousal are in line with the established effects of invasive VNS on locus coeruleus-noradrenaline signaling, and support that tVNS mimics VNS. Therefore, tVNS can be used as a tool for studying how endogenous subcortical neuromodulatory signaling affects human cognition, including perception, attention, memory, and decision-making; and also for developing novel clinical applications.