The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Following nerve injury, denervated Schwann cells (SCs) convert to repair SCs, which enable regeneration of peripheral axons. However, the repair capacity of SCs and the regenerative capacity of peripheral axons are limited. In the present studies we examined a potential therapeutic strategy to enhance the repair capacity of SCs, and tested its efficacy in enhancing regeneration of dorsal root (DR) axons, whose regenerative capacity is particularly weak. ⋯ It was therefore of great interest to discover that caErbB2 markedly enhances regeneration of damaged dorsal roots, while evoking little change in intact roots. To our knowledge, these findings are the first demonstration that repair capacity of denervated SCs can be efficaciously enhanced without altering innervated SCs. Our study also demonstrates that oncogenic ErbB2 signaling can be activated in SCs but not impede transdifferentiation of denervated SCs to regeneration-promoting repair SCs.
-
Calcitonin gene-related peptide (CGRP), the most abundant neuropeptide in primary afferent sensory neurons, is strongly implicated in the pathophysiology of migraine headache, but its role in migraine is still equivocal. As a new approach to migraine treatment, humanized anti-CGRP monoclonal antibodies (CGRP-mAbs) were developed to reduce the availability of CGRP, and were found effective in reducing the frequency of chronic and episodic migraine. We recently tested the effect of fremanezumab (TEV-48125), a CGRP-mAb, on the activity of second-order trigeminovascular dorsal horn neurons that receive peripheral input from the cranial dura, and found a selective inhibition of high-threshold but not wide-dynamic range class of neurons. ⋯ In the current paper, we report that CGRP-mAbs prevent the activation of Aδ but not C-type meningeal nociceptors by CSD. This is the first identification of an anti-migraine drug that appears to be selective for Aδ-fibers (peripherally) and HT neurons (centrally). As the main CGRP-mAb site of action appears to be situated outside the brain, we conclude that the initiation of the headache phase of migraine depends on activation of meningeal nociceptors, and that for selected patients, activation of the Aδ-HT pain pathway may be sufficient for the generation of headache perception.
-
The synaptosomal-associated protein SNAP25 is a key player in synaptic vesicle docking and fusion and has been associated with multiple psychiatric conditions, including schizophrenia, bipolar disorder, and attention-deficit/hyperactivity disorder. We recently identified a promoter variant in SNAP25, rs6039769, that is associated with early-onset bipolar disorder and a higher gene expression level in human prefrontal cortex. In the current study, we showed that this variant was associated both in males and females with schizophrenia in two independent cohorts. ⋯ Recent studies have accumulated evidence that the SNARE complex, and more specifically the SNAP25 protein, may be involved in psychiatric disorders. Here, our multilevel functional studies are bringing strong evidence for the functional consequences of an allelic variation of SNAP25 on modulating the development and plasticity of the prefrontal-limbic network. These results demonstrate a common genetically driven functional alteration of a synaptic mechanism both in schizophrenia and early-onset bipolar disorder and confirm the shared genetic vulnerability between these two disorders.
-
Classical schemes of basal ganglia organization posit that parkinsonian movement difficulties presenting after striatal dopamine depletion stem from the disproportionate firing rates of spiny projection neurons (SPNs) therein. There remains, however, a pressing need to elucidate striatal SPN firing in the context of the synchronized network oscillations that are abnormally exaggerated in cortical-basal ganglia circuits in parkinsonism. To address this, we recorded unit activities in the dorsal striatum of dopamine-intact and dopamine-depleted rats during two brain states, respectively defined by cortical slow-wave activity (SWA) and activation. ⋯ Here, we elucidate how dopamine depletion alters striatal neuron firing in vivo, with an emphasis on defining whether and how spiny projection neurons (SPNs) engage in the synchronized beta-frequency (15-30 Hz) oscillations that become pathologically exaggerated throughout basal ganglia circuits in parkinsonism. We discovered that a select population of so-called "indirect pathway" SPNs not only fire at abnormally high rates, but are also particularly prone to being recruited to exaggerated beta oscillations. Our results provide an important link between two complementary theories that explain the presentation of disease symptoms on the basis of changes in firing rate or firing synchronization/rhythmicity.
-
Classical learning theories predict extinction after the discontinuation of reinforcement through prediction errors. However, placebo hypoalgesia, although mediated by associative learning, has been shown to be resistant to extinction. We tested the hypothesis that this is mediated by the suppression of prediction error processing through the prefrontal cortex (PFC). ⋯ Our results support the idea that conceptual treatment beliefs bias the neural processing of expectations in a treatment context compared with a more stimulus-driven processing of expectations with stimulus intensity cues. We provide evidence that this is associated with the suppression of prediction error processing in the ventral striatum by the prefrontal cortex. This provides a neural basis for persisting effects in reinforcement learning and placebo hypoalgesia.