The Journal of neuroscience : the official journal of the Society for Neuroscience
-
The ability to adaptively regulate responses to the proximity of potential danger is critical to survival and imbalance in this system may contribute to psychopathology. The bed nucleus of the stria terminalis (BNST) is implicated in defensive responding during uncertain threat anticipation whereas the amygdala may drive responding upon more acute danger. This functional dissociation between the BNST and amygdala is however controversial, and human evidence scarce. ⋯ SIGNIFICANCE STATEMENT Previously proposed differential contributions of the BNST and amygdala to fear and anxiety have been recently debated. Despite the significance of understanding their contributions to defensive reactions, there is a paucity of human studies that directly compared these regions on activity and connectivity during threat processing. We show strong evidence for a dissociable role of the BNST and amygdala in threat processing by demonstrating in two large participant samples that they show a distinct temporal signature of threat responding as well as a discriminable pattern of functional connections and differential sensitivity to early life threat.
-
Memantine and ketamine are clinically useful NMDA receptor (NMDAR) open channel blockers that inhibit NMDARs with similar potency and kinetics, but display vastly different clinical profiles. This discrepancy has been hypothesized to result from inhibition by memantine and ketamine of overlapping but distinct NMDAR subpopulations. For example, memantine but not ketamine may inhibit extrasynaptic NMDARs more effectively than synaptic NMDARs. ⋯ In contrast, memantine binding increases occupancy of GluN1/2A and native NMDAR desensitized states entered after accumulation of intracellular Ca2+, a novel inhibitory mechanism. These properties may contribute to inhibition of distinct NMDAR subpopulations by memantine and ketamine and help to explain their differential clinical effects. Our results suggest stabilization of Ca2+-dependent desensitized states as a new strategy for pharmaceutical neuroprotection.
-
Histaminergic (HA) neurons, found in the posterior hypothalamic tuberomammillary nucleus (TMN), extend fibers throughout the brain and exert modulatory influence over numerous physiological systems. Multiple lines of evidence suggest that the activity of HA neurons is important in the regulation of vigilance despite the lack of direct, causal evidence demonstrating its requirement for the maintenance of arousal during wakefulness. Given the strong correlation between HA neuron excitability and behavioral arousal, we investigated both the electrophysiological diversity of HA neurons in brain slices and the effect of their acute silencing in vivo in male mice. ⋯ Here we use a transgenic mouse to interrogate both the characteristic firing properties of HA neurons and their specific role in maintaining wakefulness. Our results demonstrate that the acute, cell type-specific silencing of HA neurons during wakefulness is sufficient to not only impair arousal but to rapidly and selectively induce slow-wave sleep. This work furthers our understanding of HA-mediated mechanisms that regulate behavioral arousal.
-
Transcranial alternating current stimulation (tACS) uses sinusoidal, subthreshold, electric fields to modulate cortical processing. Cortical processing depends on a fine balance between excitation and inhibition and tACS acts on both excitatory and inhibitory cortical neurons. Given this, it is not clear whether tACS should increase or decrease cortical excitability. ⋯ In this study, using rat motor cortex, we found that tACS effects are highly variable: applying the same tACS waveform to the same cortical area does not always give the same change in cortical excitability. An integrate-and-fire model incorporating excitatory pyramidal and inhibitory interneurons indicated that tACS effects likely depend on the cortical excitation-inhibition balance. When cortical activity is excitation dominated one particular tACS phase increases excitability, but when the cortical activity is inhibition dominated the same tACS phase actually decreases excitability.
-
Location of the Mesopontine Neurons Responsible for Maintenance of Anesthetic Loss of Consciousness.
The transition from wakefulness to general anesthesia is widely attributed to suppressive actions of anesthetic molecules distributed by the systemic circulation to the cerebral cortex (for amnesia and loss of consciousness) and to the spinal cord (for atonia and antinociception). An alternative hypothesis proposes that anesthetics act on one or more brainstem or diencephalic nuclei, with suppression of cortex and spinal cord mediated by dedicated axonal pathways. Previously, we documented induction of an anesthesia-like state in rats by microinjection of small amounts of GABAA-receptor agonists into an upper brainstem region named the mesopontine tegmental anesthesia area (MPTA). ⋯ Furthermore, because anesthetic agents have the unique ability to reversibly switch the brain from wakefulness to a state of unconsciousness, knowing how and where they work is a potential route to unraveling the neural mechanisms that underlie awareness itself. Using a novel method, we have located a small, and apparently one of a kind, cluster of neurons in the mesopontine tegmentum that are capable of effecting brain-state switching when exposed to GABAA-receptor agonists. This action appears to be mediated by a network of dedicated axonal pathways that project directly and/or indirectly to nearby arousal nuclei of the brainstem and to more distant targets in the forebrain and spinal cord.