The Journal of neuroscience : the official journal of the Society for Neuroscience
-
To assess behavioral experience effects on synaptic plasticity after brain damage, the present study examined the effects of complex motor skills training (the acrobatic task) on synaptic changes in layer V of the motor cortex opposite unilateral damage to the forelimb sensorimotor cortex (FLsmc). Adult male rats were given lesions or sham operations followed by 28 d of training on the acrobatic task [acrobat condition (AC)]. As a motor activity control [motor control (MC)], lesion and sham animals were given simple repetitive exercise. ⋯ Multiple synaptic spines and perforated synapses were also differentially affected by training versus lesions. On tests of coordinated forelimb use, lesion-AC rats performed better than lesion-MC rats. In addition to supporting a link between behavioral experience and structural plasticity after brain damage, these findings suggest that adaptive neural plasticity may be enhanced using behavioral manipulations as "therapy."
-
The involvement of adenosine on the development of time-dependent reversal of long-term potentiation (LTP) by low-frequency stimulation (LFS) was investigated at Schaffer collateral-CA1 synapses of rat hippocampal slices. A train of LFS (2 Hz, 10 min, 1200 pulses) had no long-term effects on synaptic transmission but produced lasting depression of previously potentiated responses. This reversal of LTP (depotentiation) was observed when the stimulus was delivered =3 min after induction of LTP. ⋯ In addition, this LFS-induced depotentiation was blocked by bath application of adenylyl cyclase activator forskolin or injection of a cAMP analog Sp-adenosine cAMP (10 mM) into postsynaptic neurons. Moreover, the selective protein phosphatase 1 and 2A inhibitors okadaic acid and calyculin A prevented the LFS-induced depotentiation. These results thus suggest that increasing extracellular adenosine appears to underlie the LFS-induced depotentiation via acting on the A(1) receptor subtype to interrupt the cAMP-dependent biochemical processes leading to the LTP expression.
-
Repeated treatment with psychostimulant drugs causes long-lasting behavioral sensitization and associated neuroadaptations. Although sensitization induced by a single psychostimulant exposure has also been reported, information on the behavioral and neurochemical consequences of a single psychostimulant exposure is sparse. Therefore, to evaluate whether behavioral sensitization evoked by single and repeated psychostimulant pretreatment regimens represent the same neurobiological phenomenon, the time-dependent expression of behavioral, neurochemical, and neuroendocrine sensitization after a single exposure to amphetamine was investigated in rats. ⋯ The hyperreactivity of dopaminergic nerve terminals appeared to parallel the development of locomotor sensitization, i.e., whereas hyperreactivity of accumbens dopaminergic terminals increased between 3 d and 3 weeks after treatment, the hyperreactivity of medial prefrontal dopaminergic terminals decreased. Pre-exposure to amphetamine also sensitized the hypothalamus-pituitary-adrenal axis response to amphetamine at 1 and 3 weeks, but not at 3 d after treatment. Because these data closely resemble those reported previously for repeated amphetamine pretreatment, it is concluded that a single exposure to amphetamine is sufficient to induce long-term behavioral, neurochemical, and neuroendocrine sensitization in rats.
-
The p75 neurotrophin receptor (p75NTR) binds all known neurotrophins and has been suggested to either function as a coreceptor for the trk receptor tyrosine kinases or be involved in independent signaling leading to cell death. We have analyzed the effects of nerve growth factor (NGF) on the growth of cultured hippocampal pyramidal neurons and examined the possibility that the effects of NGF are mediated via generation of ceramide produced by neutral sphingomyelinase (N-SMase). During the initial hour of culture, the only detectable NGF receptor is p75NTR, which by comparative Western blot is expressed at 50- to 100-fold lower levels than on PC12 cells. ⋯ Finally, scyphostatin, a specific N-SMase inhibitor, blocks the effects of NGF. We propose that a neurotrophin-p75NTR-ceramide signaling pathway influences outgrowth of hippocampal neurons. This signaling role of p75NTR may be distinct from other signaling pathways that lead to apoptosis.
-
The aim of this study was to determine whether axonal transport of activating transcription factor-2 (ATF2) occurs in adult sensory neurons, and whether this process is under neurotrophin control. Antisera to both total ATF2 and to the activated (i.e., phosphorylated) form were used for immunocytochemistry and Western blotting. ATF2 was localized to predominantly nociceptive dorsal root ganglion cells in adult rats and shown to accumulate proximal and distal to a sciatic nerve ligature as a result of axonal transport. ⋯ In contrast, blocking endogenous NGF using an anti-NGF antibody induced an elevation in retrograde axonal transport of activated ATF2 of 4. 5-fold (p < 0.05) and decreased retrograde axonal transport of total ATF2 by 72% (p < 0.05). NGF or anti-NGF treatment had no effect on the anterograde transport levels of total or activated ATF2. This study shows that signaling by target-derived NGF to the cell bodies of sensory neurons consists, in part, of the modulation of levels and activation status of a retrogradely transported transcription factor, ATF2.