The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Impulses in primary afferent nerve fibers may produce short- or long-lasting modifications in spinal nociception. Here we have identified a robust long-term depression (LTD) of synaptic transmission in substantia gelatinosa neurons that can be induced by low-frequency stimulation of primary afferent Adelta-fibers. Synaptic transmission between dorsal root afferents and neurons in the substantia gelatinosa of the spinal cord dorsal horn was examined by intracellular recording in a transverse slice dorsal root preparation of rat spinal cord. ⋯ Loading substantia gelatinosa neurons with Ca2+ chelator BAPTA also blocked or reduced LTD. After incubation of slices with calyculin A, a selective and membrane permeable inhibitor of protein phosphatases 1 and 2A, LTD was not attenuated. We propose that this form of LTD may be relevant for long-lasting segmental antinociception after afferent stimulation.
-
The causes underlying phantom limb pain are still unknown. Recent studies on the consequences of nervous system damage in animals and humans reported substantial reorganization of primary somatosensory cortex subsequent to amputation, and one study showed that cortical reorganization is positively correlated with phantom limb pain. This paper examined the hypothesis of a functional relationship between cortical reorganization and phantom limb pain. ⋯ Cortical reorganization remained unchanged (mean change = 1.6 mm) in three phantom limb pain amputees whose pain was not reduced by brachial plexus blockade and in the phantom pain-free amputation controls. These findings suggest that cortical reorganization and phantom limb pain might have a causal relationship. Methods designed to alter cortical reorganization should be examined for their efficacy in the treatment of phantom limb pain.
-
Learning to fear dangerous situations requires the participation of neurons of the amygdala. Here it is shown that amygdalar neurons are also involved in learning to avoid dangerous situations. Amygdalar lesions severely impaired the acquisition of acoustically cued, discriminative instrumental avoidance behavior of rabbits. ⋯ The development of training-induced neuronal plasticity in the medial dorsal and anterior thalamic nuclei in late stages of behavioral acquisition was also blocked in rabbits with lesions. These results indicate that the integrity of the amygdala is essential for the establishment of both early and late training-induced cingulothalamic neuronal plasticity. It is hypothesized that amygdalar training-induced neuronal plasticity in the initial trials of conditioning represents a substrate of learned fear, essential for the early and late cingulothalamic plasticity that is involved in mediation of acquisition of the instrumental avoidance response.
-
In the majority of developing neurons, GABA can exert depolarizing actions, thereby raising neuronal Ca2+. Ca2+ elevations can have broad consequences during development, inducing gene expression, altering neurite outgrowth and growth cone turning, activating enzyme pathways, and influencing neuronal survival. We used fura-2 and fluo-3 Ca2+ digital imaging to assess the effects of inhibiting or activating the cAMP signal transduction pathway on GABA activity mediating Ca2+ rises during the early stages of in vitro hypothalamic neural development. ⋯ Long-term Ca2+ modulation by cAMP-regulating hypothalamic peptides may be mediated through a parallel mechanism. Together, these results suggest that GABAergic activity mediating Ca2+ rises is dependent on ongoing PKA activity that is maintained within a narrow zone for GABA to elicit a maximal Ca2+ elevation. Thus, neuromodulator-mediated changes in the cAMP-dependent signal transduction pathway (activation or inhibition) could lead to a substantial decrease in GABA-mediated Ca2+ rises during early development.
-
Clinical and experimental studies have shown that spinal sensory neurons become hyperexcitable after axonal injury, and electrophysiological changes have suggested that this may be attributable to changes in sodium current expression. We have demonstrated previously that sodium channel alpha-III mRNA levels are elevated and sodium channel alpha-SNS mRNA levels are reduced in rat spinal sensory neurons after axotomy. In this study we show that small (C-type) rat spinal sensory neurons express sodium currents with dramatically different kinetics after axotomy produced by sciatic nerve ligation. ⋯ However, TTX-S currents in axotomized neurons reprimed four times faster than control TTX-S currents. These data indicate that axotomy of spinal neurons is followed by downregulation of TTX-R current and by the emergence of a rapidly repriming TTX-S current and suggest that this may be attributable to the upregulation of a sodium channel isoform that was unexpressed previously in these cells. These axotomy-induced changes in sodium currents are expected to alter excitability substantially and could underlie the molecular pathogenesis of some chronic pain syndromes associated with injury to the axons of spinal sensory neurons.