The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Transcriptional deregulation and changes in mitochondrial bioenergetics, including pyruvate dehydrogenase (PDH) dysfunction, have been described in Huntington's disease (HD). We showed previously that the histone deacetylase inhibitors (HDACIs) trichostatin A and sodium butyrate (SB) ameliorate mitochondrial function in cells expressing mutant huntingtin. In this work, we investigated the effect of HDACIs on the regulation of PDH activity in striatal cells derived from HD knock-in mice and YAC128 mice. ⋯ These results suggest that HDACIs, particularly SB, promote the activity of PDH in the HD brain, helping to counteract HD-related deficits in mitochondrial bioenergetics and motor function. SIGNIFICANCE STATEMENT The present work provides a better understanding of mitochondrial dysfunction in Huntington's disease (HD) by showing that the pyruvate dehydrogenase (PDH) complex is a promising therapeutic target. In particular, the histone deacetylase inhibitor sodium butyrate (SB) may indirectly (through reduced hypoxia-inducible factor 1 alpha stabilization) decrease the expression of the most abundant PDH kinase isoforms (e.g., PDK3), ameliorating PDH activity and mitochondrial metabolism and further affecting motor behavior in HD mice, thus constituting a promising agent for HD neuroprotective treatment.
-
Previous human imaging studies manipulating attention or expectancy have identified the periaqueductal gray (PAG) as a key brainstem structure implicated in endogenous analgesia. However, animal studies indicate that PAG analgesia is mediated largely via caudal brainstem structures, such as the rostral ventromedial medulla (RVM) and locus coeruleus (LC). To identify their involvement in endogenous analgesia, we used brainstem optimized, whole-brain imaging to record responses to concurrent thermal stimulation (left forearm) and visual attention tasks of titrated difficulty in 20 healthy subjects. ⋯ We find pain intensity encoding in several forebrain structures, including the insula and attentional activation of the PAG. Discrete regions of the rostral ventromedial medulla bidirectionally influence pain perception, and locus coeruleus activity mirrors the interaction between attention and nociception. This approach has enabled the resolution of contributions from a hub of key brainstem structures to endogenous analgesia.
-
The superficial dorsal horn is the synaptic termination site for many peripheral sensory fibers of the somatosensory system. A wide range of sensory modalities are represented by these fibers, including pain, itch, and temperature. Because the involvement of local inhibition in the dorsal horn, specifically that mediated by the inhibitory amino acids GABA and glycine, is so important in signal processing, we investigated regional inhibitory control of excitatory interneurons under control conditions and peripheral inflammation-induced mechanical allodynia. ⋯ In this study, we have elucidated regional differences in inhibition of excitatory interneurons in mouse dorsal horn. We have also discovered that the dominating inhibitory neurotransmission within specific regions of dorsal horn switches following peripheral inflammation and the accompanying hypersensitivity to thermal and mechanical stimuli. Our novel findings contribute to a more complete understanding of inflammatory pain.
-
Animals show various behaviors in response to environmental chemicals. These behaviors are often plastic depending on previous experiences. Caenorhabditis elegans, which has highly developed chemosensory system with a limited number of sensory neurons, is an ideal model for analyzing the role of each neuron in innate and learned behaviors. ⋯ Here, we report a new type of behavioral response generated by a single gustatory sensory neuron, the ASE-left (ASEL) neuron. ASEL did not respond to photostimulation or upsteps of Na+ concentration when worms were cultivated in Na+-free conditions; however, when worms were cultivated with Na+, ASEL responded and inhibited AIB to avoid turning and stimulated AIY and AIA to promote forward locomotion, which collectively drove worms toward higher Na+ concentrations. Glutamate and the Gq signaling pathway are essential for driving worms toward higher Na+ concentrations.
-
Hyperalgesic priming, a model of pain chronification in the rat, is mediated by ryanodine receptor-dependent calcium release. Although ryanodine induces priming in both sexes, females are 5 orders of magnitude more sensitive, by an estrogen receptor α (EsRα)-dependent mechanism. An inositol 1,4,5-triphosphate (IP3) receptor inhibitor prevented the induction of priming by ryanodine. ⋯ SIGNIFICANCE STATEMENT The present study demonstrates a mechanism that plays a role in the marked sexual dimorphism observed in a model of the transition to chronic pain, hyperalgesic priming. This mechanism involves a reciprocal interaction between the endoplasmic reticulum receptors, IP3 and ryanodine, in the induction of priming, regulated by estrogen receptor α in the nociceptor of female rats. The presence of this signaling pathway modulating the susceptibility of nociceptors to develop plasticity may contribute to our understanding of sex differences observed clinically in chronic pain syndromes.