The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Type I spiral ganglion cells provide the afferent innervation to the inner hair cells of the mammalian organ of Corti and project centrally to the cochlear nucleus. While single-unit studies conducted over the past several decades have provided a wealth of information concerning the response characteristics of these neurons and, to some extent, their receptor targets, little is known about the neuron's intrinsic electrical properties. These properties undeniably will contribute to the firing patterns induced by acoustic stimuli. ⋯ In addition to these currents, a slow noninactivating TTX-sensitive inward current was observed that was blockable with Cd2+ or Gd3+. Problems encountered with blocking the tremendous outward K current hampered the characterization of this inward current. Similarities between the kinetics of ganglion cell currents and some of the rapid temporal characteristics of eighth nerve single-unit activity confirm the notion that intrinsic membrane properties help shape auditory neuron responses to sound.
-
Patterns of increased brain activity indicative of pain in a rat model of peripheral mononeuropathy.
Regional changes in brain neural activity were examined in rats with painful peripheral mononeuropathy (chronic constrictive injury, CCI) by using the fully quantitative 14C-2-deoxyglucose (2-DG) autoradiographic technique to measure local glucose utilization rate. CCI rats used in the experiment exhibited demonstrable thermal hyperalgesia and spontaneous pain behaviors 10 d after sciatic nerve ligation when the 2-DG experiment was carried out. In the absence of overt peripheral stimulation, reliable increases in 2-DG metabolic activity were observed in CCI rats as compared to sham-operated rats within extensive brain regions that have been implicated in supraspinal nociceptive processing. ⋯ In addition, patterns of increased neural activity found in the brain of CCI rats showed some similarities and differences to those found in the brain of rats exposed to acute nociception induced by noxious heat or formalin stimulation. Thus, these CCI-induced spontaneous increases in neural activity within extensive brain regions of CCI rats previously implicated in sensory-discriminative and affective-motivational dimensions of pain as well as centrifugal modulation of pain are likely to reflect brain neural processing of spontaneous pain. Implications of increased brain neural activity in mechanisms of neuropathic pain are discussed with emphasis on correlations between spatial patterns of altered brain neural activity and pain-related behaviors in CCI rats and clinical symptoms in neuropathic pain patients.
-
Recently, we have shown that the interaction between NGF and sensory neurons in early postnatal periods is restricted to nociceptive afferents (Ritter et al., 1991; Lewin et al., 1992a; Ritter and Mendell, 1992). Here we show that administration of excess NGF to neonatal or mature animals can lead to a profound behavioral hyperalgesia. Neonatal NGF treatment (postnatal day 0-14) resulted in a profound mechanical hyperalgesia that persisted until the animals had reached maturity (6 weeks of age). ⋯ In conclusion, it appears that the NGF-induced mechanical hyperalgesia is brought about by different mechanisms in neonatal and adult rats. Furthermore, in adult animals the NGF-induced mechanical and heat hyperalgesia also appear to be attributable to two different mechanisms. The mechanical hyperalgesia may be due to central changes (see Lewin et al., 1992b), whereas the heat hyperalgesia is likely to result at least in part from the sensitization of peripheral receptors to heat.
-
The striatum is important in basal ganglia motor control and movement disorders. In this study we demonstrate the existence of two distinct sensorimotor cortical input systems to the striatum of the squirrel monkey. The first is a group of discrete zones in the extrastriosomal matrix of the putamen ("matrisomes") that receive somatotopically organized projections from both the body map in ipsilateral primary motor cortex (MI) and maps in ipsilateral primary somatosensory cortex (SI). ⋯ Thus, with the exception of the face representation, inputs from contralateral and ipsilateral body representations may alternate in the primate striatal matrix, an arrangement reminiscent of the alternating ocular dominance columns in visual cortex. Ipsilateral SI and MI and contralateral MI all innervated matrisomes intermingled with striosomes and with matrisomes not receiving sensorimotor cortical input. The patchiness of these maps is thus unlike the smoother somatotopic maps of sensorimotor cortex, and is also unlike the fractured somatotopy reported for the cerebellum.
-
The aim of these experiments was to analyze how depolarization influences neurite outgrowth in leech neurons and what role the substrate and Ca2+ play in this response. Neurons in culture were exposed to 60 mM extracellular K+ for 30 min, which induced retraction of a subset of neurites growing on extracellular matrix substrate (ECM), a response comparable to that observed after electrical stimulation (Grumbacher-Reinert and Nicholls, 1992). After normal medium had been restored, the neurites continued to retract for about 1 hr to approximately 80% of the total starting neurite length. ⋯ The growth cones of cells grown on ECM and exposed to high K+ revealed retraction of lamellipodial and filopodial structures. On ConA, however, no differences were observed between growth cones of cells exposed to high K+ and those of control cells. These results demonstrate the importance of substrate molecules in the responses of growth cones to depolarization and therefore in the differentiation of neurons.