The Journal of neuroscience : the official journal of the Society for Neuroscience
-
The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. ⋯ Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits.
-
Ventral tegmental area (VTA) neurons play roles in reward and aversion. The VTA has three major neuronal phenotypes: dopaminergic, GABAergic, and glutamatergic. VTA glutamatergic neurons--expressing vesicular glutamate transporter-2 (VGluT2)--project to limbic and cortical regions, but also excite neighboring dopaminergic neurons. ⋯ VTA photoactivation of ChR2-expressing mice reinforced instrumental behavior and established place preferences. VTA injections of AMPA or NMDA receptor antagonists blocked optical self-stimulation and place preference. These findings suggest a role in reward function for VTA glutamatergic neurons through local excitatory synapses on mesoaccumbens dopaminergic neurons.
-
Myelinating cells synthesize large amounts of membrane protein through the secretory pathway, which makes these cells particularly sensitive to perturbations of the endoplasmic reticulum (ER). Ig binding protein (BiP), also known as glucose-regulated protein 78 (GRP78), is a critical ER chaperone that also plays a pivotal role in controlling the cellular response to ER stress. To examine the potential importance of BiP to myelinating cells, we used a conditional knock-out approach to BiP gene inactivation in oligodendrocytes during development, in adulthood, and in response to experimental autoimmune encephalomyelitis (EAE), an animal model of the inflammatory demyelinating disorder multiple sclerosis (MS). ⋯ Mice heterozygous for the oligodendrocyte-specific inactivation of BiP, which were phenotypically normal without evidence of neuropathology, displayed an exacerbated response to EAE that correlated with an increased loss of oligodendrocytes. Furthermore, mice in which the BiP gene was specifically inactivated in developing Schwann cells displayed tremor that progressed to hindlimb paralysis, which correlated with diminished numbers of myelinating Schwann cells and severe PNS hypomyelination. These studies demonstrate that BiP is critical for myelinating cell survival and contributes to the protective response of oligodendrocyte against inflammatory demyelination.
-
Alzheimer's disease (AD) is the most common cause of dementia. Neuroinflammation appears to play an important role in AD pathogenesis. Ligands of the 18 kDa translocator protein (TSPO), a marker for activated microglia, have been used as positron emission tomography (PET) tracers to reflect neuroinflammation in humans and mouse models. Here, we used the novel TSPO-targeted PET tracer (18)F-GE180 (flutriciclamide) to investigate differences in neuroinflammation between young and old WT and APP/PS1dE9 transgenic (Tg) mice. In vivo PET scans revealed an overt age-dependent elevation in whole-brain uptake of (18)F-GE180 in both WT and Tg mice, and a significant increase in whole-brain uptake of (18)F-GE180 (peak-uptake and retention) in old Tg mice compared with young Tg mice and all WT mice. Similarly, the (18)F-GE180 binding potential in hippocampus was highest to lowest in old Tg > old WT > young Tg > young WT mice using MRI coregistration. Ex vivo PET and autoradiography analysis further confirmed our in vivo PET results: enhanced uptake and specific binding (SUV75%) of (18)F-GE180 in hippocampus and cortex was highest in old Tg mice followed by old WT, young Tg, and finally young WT mice. (18)F-GE180 specificity was confirmed by an in vivo cold tracer competition study. We also examined (18)F-GE180 metabolites in 4-month-old WT mice and found that, although total radioactivity declined over 2 h, of the remaining radioactivity, ∼90% was due to parent (18)F-GE180. In conclusion, (18)F-GE180 PET scans may be useful for longitudinal monitoring of neuroinflammation during AD progression and treatment. ⋯ Microglial activation, a player in Alzheimer's disease (AD) pathogenesis, is thought to reflect neuroinflammation. Using in vivo microPET imaging with a novel TSPO radioligand, (18)F-GE180, we detected significantly enhanced neuroinflammation during normal aging in WT mice and in response to AD-associated pathology in APP/PS1dE9 Tg mice, an AD mouse model. Increased uptake and specific binding of (18)F-GE180 in whole brain and hippocampus were confirmed by ex vivo PET and autoradiography. The binding specificity and stability of (18)F-GE180 was further confirmed by a cold tracer competition study and a metabolite study, respectively. Therefore, (18)F-GE180 PET imaging may be useful for longitudinal monitoring of neuroinflammation during AD progression and treatment and may also be useful for other neurodegenerative diseases.
-
Randomized Controlled Trial
Mindfulness Meditation-Based Pain Relief Employs Different Neural Mechanisms Than Placebo and Sham Mindfulness Meditation-Induced Analgesia.
Mindfulness meditation reduces pain in experimental and clinical settings. However, it remains unknown whether mindfulness meditation engages pain-relieving mechanisms other than those associated with the placebo effect (e.g., conditioning, psychosocial context, beliefs). To determine whether the analgesic mechanisms of mindfulness meditation are different from placebo, we randomly assigned 75 healthy, human volunteers to 4 d of the following: (1) mindfulness meditation, (2) placebo conditioning, (3) sham mindfulness meditation, or (4) book-listening control intervention. We assessed intervention efficacy using psychophysical evaluation of experimental pain and functional neuroimaging. Importantly, all cognitive manipulations (i.e., mindfulness meditation, placebo conditioning, sham mindfulness meditation) significantly attenuated pain intensity and unpleasantness ratings when compared to rest and the control condition (p < 0.05). Mindfulness meditation reduced pain intensity (p = 0.032) and pain unpleasantness (p < 0.001) ratings more than placebo analgesia. Mindfulness meditation also reduced pain intensity (p = 0.030) and pain unpleasantness (p = 0.043) ratings more than sham mindfulness meditation. Mindfulness-meditation-related pain relief was associated with greater activation in brain regions associated with the cognitive modulation of pain, including the orbitofrontal, subgenual anterior cingulate, and anterior insular cortex. In contrast, placebo analgesia was associated with activation of the dorsolateral prefrontal cortex and deactivation of sensory processing regions (secondary somatosensory cortex). Sham mindfulness meditation-induced analgesia was not correlated with significant neural activity, but rather by greater reductions in respiration rate. This study is the first to demonstrate that mindfulness-related pain relief is mechanistically distinct from placebo analgesia. The elucidation of this distinction confirms the existence of multiple, cognitively driven, supraspinal mechanisms for pain modulation. ⋯ Recent findings have demonstrated that mindfulness meditation significantly reduces pain. Given that the "gold standard" for evaluating the efficacy of behavioral interventions is based on appropriate placebo comparisons, it is imperative that we establish whether there is an effect supporting meditation-related pain relief above and beyond the effects of placebo. Here, we provide novel evidence demonstrating that mindfulness meditation produces greater pain relief and employs distinct neural mechanisms than placebo cream and sham mindfulness meditation. Specifically, mindfulness meditation-induced pain relief activated higher-order brain regions, including the orbitofrontal and cingulate cortices. In contrast, placebo analgesia was associated with decreased pain-related brain activation. These findings demonstrate that mindfulness meditation reduces pain through unique mechanisms and may foster greater acceptance of meditation as an adjunct pain therapy.