The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Traumatic brain injury (TBI) is a major risk factor for the development of multiple neurodegenerative diseases. With respect to the increasing prevalence of TBI, new therapeutic strategies are urgently needed that will prevent secondary damage to primarily unaffected tissue. Consistently, neuroinflammation has been implicated as a key mediator of secondary damage following the initial mechanical insult. ⋯ Concomitantly, there was a significant reduction in multiple proinflammatory and neurotoxic mediators with this treatment paradigm. Importantly, CCR2 antagonism resulted in a sparing of TBI-induced hippocampal-dependent cognitive dysfunction and reduced proinflammatory activation profile 1 month after injury. Thus, therapeutically targeting the CCR2(+) subset of monocytes/macrophages may provide a new avenue of clinical intervention following TBI.
-
In conscious mammals, hypoxia or hypercapnia stimulates breathing while theoretically exerting opposite effects on central respiratory chemoreceptors (CRCs). We tested this theory by examining how hypoxia and hypercapnia change the activity of the retrotrapezoid nucleus (RTN), a putative CRC and chemoreflex integrator. Archaerhodopsin-(Arch)-transduced RTN neurons were reversibly silenced by light in anesthetized rats. ⋯ RTN neurons are silent above pHa 7.5 and increasingly active below this value. During hyperoxia, RTN activation maintains breathing despite the inactivity of the carotid bodies. Finally, during hypocapnic hypoxia, carotid body stimulation increases breathing frequency via pathways that bypass RTN.
-
Peripheral nerve injury can trigger neuropathic pain in adults but not in infants; indeed, for unknown reasons, neuropathic pain is rare before adolescence. We show here that the absence of neuropathic pain response in infant male rats and mice following nerve injury is due to an active, constitutive immune suppression of dorsal horn pain activity. In contrast to adult nerve injury, which triggers a proinflammatory immune response in the spinal dorsal horn, infant nerve injury triggers an anti-inflammatory immune response, characterized by significant increases in IL-4 and IL-10. ⋯ As infant nerve injured mice reach adolescence (postnatal day 25-30), the dorsal horn immune profile switches from an anti-inflammatory to a proinflammatory response characterized by significant increases in TNF and BDNF, and this is accompanied by a late onset neuropathic pain behavior and increased dorsal horn cell sensitivity to cutaneous mechanical and cold stimuli. These findings show that neuropathic pain following early life nerve injury is not absent but suppressed by neuroimmune activity and that "latent" pain can still emerge at adolescence, when the neuroimmune profile changes. The data may explain why neuropathic pain is rare in young children and also why it can emerge, for no observable reason, in adolescent patients.
-
Acute insults produce hyperalgesic priming, a neuroplastic change in nociceptors that markedly prolongs inflammatory mediator-induced hyperalgesia. After an acute initiating insult, there is a 72 h delay to the onset of priming, for which the underlying mechanism is unknown. We hypothesized that the delay is due to the time required for a signal to travel from the peripheral terminal to the cell body followed by a return signal to the peripheral terminal. ⋯ Furthermore, when an inducer of priming is administered in the paw, priming can be detected in spinal cord (as prolonged hyperalgesia induced by intrathecal PGE2), but only when the mechanical stimulus is presented to the paw on the side where the priming inducer was administered. Both spinally and peripherally induced priming is prevented by intrathecal oligodeoxynucleotide antisense to the nuclear transcription factor CREB mRNA. Finally, the inhibitor of protein translation reversed hyperalgesic priming only when injected at the site where PGE2 was administered, suggesting that the signal transmitted from the cell body to the peripheral terminal is not a newly translated protein, but possibly a newly expressed mRNA.
-
Chronic pain is still a basic science and clinical challenge. Unraveling of the neurobiological mechanisms involved in chronic pain will offer novel targets for the development of therapeutic strategies. It is well known that central sensitization in the anterior cingulate cortex (ACC) plays a critical role in initiation, development, and maintenance of chronic pain. ⋯ Disrupting the interaction of Cav-1 and NR2B through microinjection of a short peptide derived from the C-terminal of NR2B into the ACC exhibited a significant anti-nociception effect associated with decrease of surface NR2B expression. Moreover, Cav-1 increased intracellular Ca(2+) concentration and activated the ERK/CREB signaling pathway in an NR2B-dependent manner in the ACC. Our findings implicate that Cav-1 in the ACC neurons modulates chronic neuropathic pain via regulation of NR2B and subsequent activation of ERK/CREB signaling, suggesting a possible caveolin-mediated process would participate in neuronal transmission pathways implicated in pain modulation.