Bioscience reports
-
Preeclampsia (PE) is a disorder of pregnancy that is characterised by hypertension and a significant amount of proteinuria beginning after 20 weeks of pregnancy. It is closely associated with high maternal morbidity, mortality, maternal organ dysfunction or foetal growth restriction. Therefore, it is necessary to identify early and novel diagnostic biomarkers of PE. ⋯ Module analysis and identification of hub genes were performed to screen a total of 17 significant hub genes. The support vector machines (SVMs) model was used to predict the potential application of biomarkers in PE diagnosis with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.958 in the training set and 0.834 in the test set, suggesting that this risk classifier has good discrimination between PE patients and control samples. Our results demonstrated that these 17 differentially expressed hub genes can be used as potential biomarkers for diagnosis of PE.
-
Pancreatic ductal adenocarcinoma (PDAC) is a class of the commonest malignant carcinomas. The present study aimed to elucidate the potential biomarker and prognostic targets in PDAC. The array data of GSE41368, GSE43795, GSE55643, and GSE41369 were downloaded from Gene Expression Omnibus (GEO) database. ⋯ A total of 32 DEmiRNAs and 150 overlapped DEGs were identified, and Metascape showed that DEGs were significantly enriched in cellular chemical homeostasis and pathways in cancer, while DEmiRNAs were mainly enriched in signal transduction and Glypican pathway. Moreover, seven hub genes with a high degree, namely, V-myc avian myelocytomatosis viral oncogene homolog (MYC), solute carrier family 2 member 1 (SLC2A1), PKM, plasminogen activator, urokinase (PLAU), peroxisome proliferator activated receptor γ (PPARG), MET proto-oncogene, receptor tyrosine kinase (MET), and integrin subunit α 3 (ITGA3), were identified and found to be up-regulated between PDAC and normal tissues. miR-135b, miR-221, miR-21, miR-27a, miR-199b-5p, miR-143, miR-196a, miR-655, miR-455-3p, miR-744 and hub genes predicted poor OS of PDAC. An integrative bioinformatics analysis identified several hub genes that may serve as potential biomarkers or targets for early diagnosis and precision target treatment of PDAC.
-
Background: Postoperative cognitive dysfunction (POCD) is a great problem for anesthetized subjects and is associated with poor short- and long-term outcomes. We explored promising predictors for POCD in elderly patients after hip fracture surgery. Methods: Elderly subjects (aged ≥65 years) undergoing surgery for hip fracture were consecutively recruited. ⋯ MDA expression on POD1 (OR: 1.12, 95%CI: 1.03-1.23, P=0.017) was the only independent risk factor for POCD according to the final multivariate logistic regression analysis. ROC curve analysis indicated that MDA on POD1 was a predictor for POCD, with an area under the curve (AUC) of 0.683 and 95%CI of 0.590-0.775 (P<0.001). Conclusions: In conclusion, we demonstrated that MDA on POD1 was an independent risk factor for POCD in elderly subjects undergoing hip fracture surgery.
-
Previous study has explored that SNHG16, a long non-coding RNA (lncRNA), mediated cell growth and proliferation. Yet, the role of SNHG16 in human colorectal cancer (CRC) still remains to be explored. Therefore, we conducted the present study to explore the functions of SNHG16 in CRC. ⋯ Bioinformatics analysis and luciferase reporter assay showed that SNHG16 was a direct target of miR-200a-3p. MiR-200a-3p was inversely correlated with SNHG16 expression in CRC tissues. In brief, the above results elucidate the important role of SNHG16 in CRC tumorigenesis, suggesting that SNHG16 might be quite vital for the diagnosis and development of CRC.
-
Retracted Publication
LncRNA MALAT1 up-regulates VEGF-A and ANGPT2 to promote angiogenesis in brain microvascular endothelial cells against oxygen-glucose deprivation via targetting miR-145.
Stroke is one of the leading causes of death and long-term disability around the world. Angiogenesis is supposed to protect brain microvascular endothelial cells (BMECs) from oxidative and ischemic stress. Previous studies indicated that interaction between metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and miR-145 was involved in myocardial ischemia reperfusion, suggesting MALAT1 and miR-145 were also mediated with the progress of angiogenesis and cell migration in oxygen-glucose deprivation (OGD)-induced BMECs. ⋯ Results showed that the levels of lncRNA-MALAT1 and miR-145 were up-regulated in OGD-induced BMECs. miR-145 functioned as an anti-angiogenic and pro-apoptotic factor in OGD treated BMECs via down-regulating VEGF-A and ANGPT2 directly. While lncRNA-MALAT1 enhanced the expressions of VEGF-A and ANGPT2 by targetting miR-145 to promote angiogenesis and proliferation of BMECs under OGD conditions. Our present study revealed the inhibitory functions of miR-145 on angiogenesis through direct targetting on VEGF-A and ANGPT2 for the first time and proved the protective role of lncRNA-MALAT1 for BMECs under OGD conditions through the direct regulation of miR-145.