Medicinal research reviews
-
Breast cancer is the most common cancer diagnosed in women and the second most common cause of female cancer-related deaths, with more than one million new cases diagnosed per year throughout the world. With the recent advances in the knowledge of cellular processes and signaling pathways involved in the pathogenesis of breast cancer, the current focus of researchers and clinicians is to develop novel treatment strategies that can be included in the armamentarium against breast cancer. ⋯ The mechanism of action, preclinical and clinical trial data of the agents that are in use for targeting the EGFR/HER-2 pathway and the current status, thereof, have been discussed in detail. In addition, the future clinical trial promises these agents hold either as monotherapy or as combination therapy with conventional agents or with other antisignaling agents have been pondered, so as to provide better and more efficacious treatment strategies for breast cancer patients.
-
Histone deacetylase (HDAC) is recognized as one of the promising targets for cancer treatment as many HDAC inhibitors have entered clinical trials for both solid and liquid tumors. Nevertheless, the mechanisms underlying the antiproliferative effects of HDAC inhibitors remain elusive. ⋯ Also noteworthy is the effect of HDAC inhibitors on Akt downregulation through the alteration of protein phosphatase 1 (PP1) complex formation. To provide an overview of the use of HDAC inhibitors in cancer treatment, this review addresses the following subjects: (1) the physiological relevance of HDAC-mediated acetylation of histone and nonhistone substrates, (2) the chemical biology of HDACs and development of a novel class of HDAC inhibitors, and (3) the protein acetylation-independent effect of HDAC inhibitors on the activation status of signaling kinases.
-
Aminopeptidase N (APN)/CD13 (EC 3.4.11.2) is a transmembrane protease present in a wide variety of human tissues and cell types (endothelial, epithelial, fibroblast, leukocyte). APN/CD13 expression is dysregulated in inflammatory diseases and in cancers (solid and hematologic tumors). APN/CD13 serves as a receptor for coronaviruses. ⋯ Therefore, inhibition of APN/CD13 may lead to the development of anti-cancer and anti-inflammatory drugs. This review provides an update on the biological and pharmacological profiles of known natural and synthetic APN inhibitors. Current status on their potential use as therapeutic agents is discussed with regard to toxicity and specificity.
-
Morphine-6-glucuronide (M6G) appears to show equivalent analgesia to morphine but to have a superior side-effect profile in terms of reduced liability to induce nausea and vomiting and respiratory depression. The purpose of this review is to examine the evidence behind this statement and to identify the possible reasons that may contribute to the profile of M6G. The vast majority of available data supports the notion that both M6G and morphine mediate their effects by activating the micro-opioid receptor. ⋯ However, none of these are adequate alone to explain the clinical differences between M6G and morphine. The ADME differences are perhaps most likely to explain some of the differences but seem unlikely to be the whole story. Further work is required to examine further the profile of M6G, notably whether M6G penetrates differentially to areas of the brain involved in pain and those involved in nausea, vomiting, and respiratory control or whether micro-opioid receptors in these brain areas differ in either their regulation or pharmacology.
-
Gabapentin and Pregabalin are both 3-alkylated gamma-amino butyric acid (GABA) analogs. Gabapentin was designed as a lipophilic GABA analog and was first synthesized as a potential anticonvulsant and was launched in 1994 as add-on therapy for the treatment of epilepsy. In this review the discovery and development of gabapentin as an anticonvulsant are discussed. ⋯ It has since been shown to have a similar pharmacological profile to gabapentin with greater potency in preclinical models of pain and epilepsy. Studies of the mechanism(s) of action of these compounds are discussed. Work towards identifying new analogs of both gabapentin and pregabalin is also reviewed.