Neuropeptides
-
CART (cocaine- and amphetamine-regulated transcript) peptides appear to be mediators or modulators of psychostimulant drugs. An interesting result in the nucleus accumbens has been that injection of CART peptide has no effect by itself on locomotor activity, but it reduces the locomotor activity induced by cocaine or amphetamine. However, in the ventral tegmental area (VTA), injections of CART peptide have been shown to increase locomotor activity, although to a lesser degree [Kimmel, H. ⋯ CART reduced the locomotor activating effects of systemic cocaine, especially at higher doses of CART. These results imply that intra-VTA CART is not simply acting in the same manner as cocaine, and is likely to oppose the action of cocaine. This has implications for the physiological significance of CART-DA (dopamine) interactions and for medications development.
-
Neuropeptides released from the cutaneous sensory nerve endings have neurotransmitter and immunoregulatory roles; they exert mitogenic actions and can influence the functions of different cell types in the skin. The aims of this study were a systematic investigation of the effects of the neuropeptides substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP) and galanin (GAL) on the inflammatory cytokine production (IL-1alpha, IL-8 and TNF-alpha) of the keratinocytes, and a study of their role in the production and secretion of nerve growth factor (NGF) and its precursor molecule (proNGF). Cultures of normal human keratinocytes were treated with 10(-8)M SP, CGRP, VIP or GAL for 30 min. ⋯ Both control cultures and neuropeptide-treated cultures were found to secrete proNGF and mature NGF, but neuropeptide-treated cell cultures produced markedly higher (3-7-fold) amounts of NGF-like immunoreactive materials. The results demonstrated that neuropeptides released from cutaneous nerves after an injurious stimulus are able to induce an upregulation of IL-1alpha and IL-8 production; they are additionally able to influence the expressions of proNGF/NGF and their secretion from the keratinocytes. These findings may contribute toward an understanding of the neural influence on skin health and disease.
-
In the present study, electrophysiological recordings were made from hippocampal slices obtained from mice overexpressing galanin under the promoter for the platelet-derived growth factor-B (GalOE mice). In these mice, a particularly strong galanin expression is seen in the granule cell layer/mossy fibers. Paired-pulse facilitation (PPF) of excitatory postsynaptic field potentials (fEPSPs) at the lateral perforant path (LPP)-dentate gyrus synapses was elicited in the dentate gyrus after stimulation with different interpulse intervals. ⋯ Application of the putative galanin antagonist M35 increased PPF in slices from aged WT mice as well as from adult and aged GalOE mice, but had no effect in slices taken from young adult WT mice. These data indicate that galanin is involved in hippocampal synaptic plasticity, in particular in age-related reduction of synaptic plasticity in the LPP input to the dentate gyrus. Galaninergic mechanisms may therefore represent therapeutic targets for treatment of age-related memory deficits and Alzheimer's disease.
-
Evidence suggests that galanin and its receptors including GalR1 are involved in the modulation of nociception. To understand the contributions of this galanin receptor subtype to the analgesic effect of galanin, we systematically examined the nociception phenotype of the GalR1 knockout (KO) mice. (1) Baseline thresholds: Thermal escape latencies and tactile thresholds of the hind paws were not different between the GalR1 KO and wild type (WT) mice. (2) Thermal injury evoked hyperalgesia: Thermal injury (52 degrees C, 45 s) to one hind paw resulted in a reduction in the thermal escape latency as compared to the uninjured paw. The right/left difference score was significantly greater in the KO (5.9 +/- 0.8 s) than for the WT (2.8 +/- 0.7 s) indicating a greater hyperalgesia. (3) Formalin-induced flinching: Formalin paw injection (2.5%/20 microl) produced a two-phase flinching in both GalR1 KO and WT groups, that was detected by an automated flinching sensor device. ⋯ On days 14-21, GalR1 KO animals showed a significant recovery as compared to WT. In summary, GalR1 KO mice showed no difference from WT with respect to acute nociception, but showed a modest tendency towards increased hyperalgesia after tissue injury and inflammation. These results are consistent with a regulatory effect of galanin at GalR1 receptors on nociceptive processing.