Neuropeptides
-
The opioid system controls nociception, stress responses, and addictive behaviors. Exogenous alkaloid opiates and endogenous opioid peptides stimulate mu-, delta- and kappa-opioid receptors, whose activities have long been analyzed by pharmacological tools. Mice lacking opioid receptor and opioid peptide precursor genes have now been produced by gene targeting. ⋯ The examination of responses to drugs has clarified involvement of each receptor as molecular targets for exogenous opiates in vivo. Those data have also demonstrated the critical role of mu-receptor in cannabinoid and alcohol reinforcement and confirmed the involvement of kappa receptor in several dysphoric responses. Ongoing studies therefore help in understanding the molecular basis of opioid-controlled behaviors and will contribute to the development of novel therapeutics for pain, anxiety, and drug abuse.
-
Male Wistar rats were administered with naloxone (1 mg/kg i.p.) or MR 2266 (5 mg/kg i.p) 15 min before paracetamol (400 mg/kg i.p.) treatment and the pain threshold was evaluated. Rats were subjected to the hot-plate and formalin tests and immunoreactive dynorphin A (ir-dynorphin A) levels were measured in the hypothalamus, hippocampus, striatum, brainstem, frontal and parietal-temporal cortex by radioimmunoassay. ⋯ MR 2266 but not naloxone reversed the decrease in ir-dynorphin A levels elicited by paracetamol. Paracetamol seems to exert its antinociceptive effect also through the opioidergic system modulating dynorphin release in the central nervous system (CNS) of the rat, as suggested by the decrease in the peptide levels.
-
To evaluate the roles of spinal neurokinin receptors in the development of persistent nociception and hyperalgesia to thermal and mechanical stimuli induced by subcutaneous (s.c.) bee venom injection, effects of intrathecal (i.t.) pre- or post-treatment with a non-selective antagonist of (NK1/2) receptors, [D-Arg1,D-Trp7,9,Leu11] substance P (spantide), and a selective NK3 receptor antagonist, (S)-(N)-(1-(3-(1-benzoyl-3-(3,4-dichlorophenyl) piperidin-3-yl)propyl)-4-phenylpiperidin-4-yl)-N-methyl acetamide (SR142801) were assessed in conscious rat. Injection of bee venom s.c. into the plantar surface of one hind paw resulted in a pathological pain phenomenon characterized by a 1-2 h single phase of persistent spontaneous nociceptive behaviors (continuously flinching the injected paw) and a 72-96 h profound primary thermal and mechanical hyperalgesia in the injection site and a secondary thermal hyperalgesia in the non-injected hindpaw. Pre-treatment with spantide i.t. at 0.05 microg, 0.5 microg and 5 microg produced a dose-related suppression of the bee venom-induced flinching reflex during the whole time course and the inhibitory rate was 24 +/- 12.60% (35.38 +/- 4.12 flinches/5 min, n=5), 48 +/- 6.75% (24.53 +/- 2.90 flinches/5 min, n=5) and 60 +/- 7.69% (18.88 +/- 3.58 flinches/5 min, n=5) respectively when compared with the saline control group (46.80 +/- 2.60 flinches/5 min, n=5). ⋯ Pre and post-treatment of SR142801 did not produce any significant effect on the bee venom-induced spontaneous pain and thermal and mechanical hyperalgesia. Our present result suggests that activation of spinal NK1/2 receptors is involved in both induction and maintenance of the persistent spontaneous nociception, while it is only involved in induction of the primary and secondary thermal, but not primary mechanical hyperalgesia induced by s.c. bee venom injection. The spinal NK3 receptor seems not likely to be involved in the bee venom-induced behavioral response characterized by spontaneous pain and thermal and mechanical hyperalgesia.
-
Calcitonin gene-related peptides (CGRP) is a 37 amino acids peptide that has a proliferative effect on human endothelial cells, and is therefore important for the formation of new vessels and wound healing. As indicated by in vitro and animal studies, CGRP is also a potent vasodilator for cutaneous, cerebral, coronary vessels, a bronchoconstrictor and endocrine regulator. Systemic CGRP increase in patients with soft tissue injuries, chronic illness and sepsis, indicates that CGRP may yet be an important peptides in chronic illness. ⋯ Furthermore, Elastase (a decisive marker for inflammation and infectious complications) was found to be higher in patients being pronounced in day 2 than in day 1 (day 1 [200 +/-136], day2 [139 +/-118]). Creatine kinase and myoglobin were measured and found to be notably higher in patients. These peptides may be yet another group of cytokines playing significant role in immunologic, inflammatory complications or wound healing in this group of patients.
-
The present study was designed to investigate the modulatory effects of blockade of spinal histamine receptors on antinociception induced by supraspinally administered mu-epsilon-, delta-, and kappa-opioid receptor agonists. The effects of intrathecal (i.t.) injections with cyproheptadine [a histamine-1 (H1) receptor antagonist], ranitidine (a H2 receptor antagonist), or thioperamide (a H3 receptor antagonist) injected i.t., on the antinociception induced by morphine (a mu-receptor antagonist), beta-endorphin (an epsilon-receptor agonist), D-Pen(2,5)-enkephalin (DPDPE, a delta-receptor agonist) or trans-3, 4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl) cyclohxyl] benzeocetamide (U50,488H, a kappa-receptor agonist) injected intracerebroventricularly (i.c.v.) were studied. The antinociception was assayed using the tail-flick test. ⋯ In addition, the i.t. pretreatment with ranitidine dose-dependently attenuated the inhibition of the tail-flick response induced by morphine, b-endorphin and U50,488H without affecting DPDPE-induced response. Our results suggest that spinal histamine H1 and H3 receptors may involved in the production of antinociception induced by supraspinally applied morphine, b-endorphin, DPDPE and U50,488H. Spinal H2 receptors appear to be involved in supraspinally administered morphine, b-endorphin- and U50,488H-induced antinociception but not DPDPE-induced antinociception.