Kidney international
-
Kidney international · Apr 2017
Neuropilin1 regulates glomerular function and basement membrane composition through pericytes in the mouse kidney.
Neuropilin1 (Nrp1) is a co-receptor best known to regulate the development of endothelial cells and is a target of anticancer therapies. However, its role in other vascular cells including pericytes is emergent. The kidney is an organ with high pericyte density and cancer patients develop severe proteinuria following administration of NRP1B-neutralizing antibody combined with bevacizumab. ⋯ These features were phenocopied by treating wild-type mice with Nrp1-neutralizing antibodies. Thus, our results reveal a postdevelopmental role of Nrp1 in renal pericytes as an important regulator of glomerular basement membrane integrity. Furthermore, our study offers novel mechanistic insights into renal side effects of Nrp1 targeting cancer therapies.
-
Kidney international · Mar 2017
Multicenter Study Comparative Study Observational StudyInflammation and elevated levels of fibroblast growth factor 23 are independent risk factors for death in chronic kidney disease.
Inflammation is a consequence of chronic kidney disease (CKD) and is associated with adverse outcomes in many clinical settings. Inflammation stimulates production of fibroblast growth factor 23 (FGF23), high levels of which are independently associated with mortality in CKD. Few large-scale prospective studies have examined inflammation and mortality in patients with CKD, and none tested the interrelationships among inflammation, FGF23, and risk of death. ⋯ With further adjustment for FGF23, the risks of death associated with interleukin-6 and C-reactive protein were minimally attenuated. Compared to participants in the lowest quartiles of inflammation and FGF23, the multivariable-adjusted hazard ratio of death among those in the highest quartiles of both biomarkers was 4.38 (2.65-7.23) for interleukin-6 and FGF23, and 5.54 (3.04-10.09) for C-reactive protein and FGF23. Thus, elevated levels of interleukin-6, C-reactive protein, and FGF23 are independent risk factors for mortality in CKD.
-
Kidney international · Mar 2017
Lysophosphatidic acid signaling through its receptor initiates profibrotic epithelial cell fibroblast communication mediated by epithelial cell derived connective tissue growth factor.
The expansion of the fibroblast pool is a critical step in organ fibrosis, but the mechanisms driving expansion remain to be fully clarified. We previously showed that lysophosphatidic acid (LPA) signaling through its receptor LPA1 expressed on fibroblasts directly induces the recruitment of these cells. Here we tested whether LPA-LPA1 signaling drives fibroblast proliferation and activation during the development of renal fibrosis. ⋯ Proximal tubular epithelial cell-derived connective tissue growth factor mediated renal fibroblast proliferation and myofibroblast differentiation. Administration of an inhibitor of myocardin-related transcription factor/serum response factor suppressed obstruction-induced renal fibrosis. Thus, targeting LPA-LPA1 signaling and/or myocardin-related transcription factor/serum response factor-induced transcription could be promising therapeutic strategies for renal fibrosis.
-
Nucleotides are key subunits for nucleic acids and provide energy for intracellular metabolism. They can also be released from cells to act physiologically as extracellular messengers or pathologically as danger signals. Extracellular nucleotides stimulate membrane receptors in the P2 and P1 family. ⋯ Purinergic receptors also regulate the activity and proliferation of fibroblasts, promoting both inflammation and fibrosis in chronic disease. In this short review we summarize some of the recent findings related to purinergic signaling in the kidney. We focus predominantly on the P2X7 receptor, discussing why antagonists have so far disappointed in clinical trials and how advances in our understanding of purinergic signaling might help to reposition these compounds as potential treatments for renal disease.