Antiviral research
-
Favipiravir (T-705; 6-fluoro-3-hydroxy-2-pyrazinecarboxamide) is an antiviral drug that selectively inhibits the RNA-dependent RNA polymerase of influenza virus. It is phosphoribosylated by cellular enzymes to its active form, favipiravir-ribofuranosyl-5'-triphosphate (RTP). Its antiviral effect is attenuated by the addition of purine nucleic acids, indicating the viral RNA polymerase mistakenly recognizes favipiravir-RTP as a purine nucleotide. ⋯ A Phase III clinical evaluation of favipiravir for influenza therapy has been completed in Japan and two Phase II studies have been completed in the United States. In addition to its anti-influenza activity, favipiravir blocks the replication of many other RNA viruses, including arenaviruses (Junin, Machupo and Pichinde); phleboviruses (Rift Valley fever, sandfly fever and Punta Toro); hantaviruses (Maporal, Dobrava, and Prospect Hill); flaviviruses (yellow fever and West Nile); enteroviruses (polio- and rhinoviruses); an alphavirus, Western equine encephalitis virus; a paramyxovirus, respiratory syncytial virus; and noroviruses. With its unique mechanism of action and broad range of antiviral activity, favipiravir is a promising drug candidate for influenza and many other RNA viral diseases for which there are no approved therapies.
-
Fifty-nine US isolates of HSV-1 and HSV-2 obtained between 1998 and 2004 were tested for sensitivity to the helicase-primase inhibitor, pritelivir (AIC316, BAY 57-1293) by plaque-reduction assay. All isolates, which were collected prior to any clinical use of primase-helicase inhibitors, were sensitive and showed mean EC50 values of 0.026 and 0.029μM for HSV-1 and HSV-2, respectively. ⋯ These data provide a baseline for HSV sensitivity to pritelivir in general population before it is introduced and broadly used to treat HSV infection. The data also validate pritelivir as an appropriate therapy for nucleoside-resistant HSV infections.
-
Receptor recognition is a major determinant of the host range, cross-species infections, and pathogenesis of the severe acute respiratory syndrome coronavirus (SARS-CoV). A defined receptor-binding domain (RBD) in the SARS-CoV spike protein specifically recognizes its host receptor, angiotensin-converting enzyme 2 (ACE2). ⋯ These principles may apply to other emerging animal viruses, including the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV). This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses".
-
Antiviral immune responses play as a double edged sword in resolution of infection and pathogenesis of acute lung injury caused by infection with highly pathogenic influenza A viruses. Here we show that type I interferons (IFNs) are important in protection against acute influenza A virus infection not only via their antiviral activity but also via their anti-inflammatory activity. ⋯ Restoration of IL-10 during an ongoing virus infection significantly reduced the levels of proinflammatory cytokines and improved mortality of IFNAR KO mice. These results suggest that type I IFNs are responsible not only for direct resolution of viral load but also for suppression of immunopathology caused by influenza A virus through IL-10 production.
-
Statins not only reduce levels of LDL-cholesterol, they counteract the inflammatory changes associated with acute coronary syndrome and improve survival. Similarly, in patients hospitalized with laboratory-confirmed seasonal influenza, statin treatment is associated with a 41% reduction in 30-day mortality. Most patients of any age who are at increased risk of influenza mortality have chronic low-grade inflammation characteristic of metabolic syndrome. ⋯ During the 2009 H1N1 influenza pandemic, timely and affordable supplies of vaccines and antiviral agents were unavailable to more than 90% of the world's people. In contrast, statins and other immunomodulatory agents are currently produced as inexpensive generics, global supplies are huge, and they would be available to treat patients in any country with a basic health care system on the first pandemic day. Treatment with statins and other immunomodulatory agents represents a new approach to reducing mortality caused by seasonal and pandemic influenza.