Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
-
J. Cereb. Blood Flow Metab. · Mar 2015
Biography Historical ArticleIn memoriam: William Feindel, O.C., G.O.Q., MDCM, D. Phil; July 12, 1918-January 12, 2014.
-
J. Cereb. Blood Flow Metab. · Mar 2015
Hydrogen sulfide inhalation decreases early blood-brain barrier permeability and brain edema induced by cardiac arrest and resuscitation.
The effects of hydrogen sulfide (H2S) on blood-brain barrier (BBB) and brain edema after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) remain poorly understood. We investigated the effects of exogenous 80-p.p.m. H2S gas on BBB, brain water content, neurologic outcome, and survival rate after CA and CPR. ⋯ These results indicate that inhalation of 80-p.p.m. H2S immediately after CPR attenuated BBB permeability and brain edema, and improved neurologic outcome and 14-day survival of rats after CA. The therapeutic benefits of H2S could be associated with suppression of MMP-9 and VEGF expression and increased expression of Ang-1.
-
J. Cereb. Blood Flow Metab. · Feb 2015
Comparative Study Clinical TrialComparison of frequency and time domain methods of assessment of cerebral autoregulation in traumatic brain injury.
The impulse response (IR)-based autoregulation index (ARI) allows for continuous monitoring of cerebral autoregulation using spontaneous fluctuations of arterial blood pressure (ABP) and cerebral flow velocity (FV). We compared three methods of autoregulation assessment in 288 traumatic brain injury (TBI) patients managed in the Neurocritical Care Unit: (1) IR-based ARI; (2) transfer function (TF) phase, gain, and coherence; and (3) mean flow index (Mx). Autoregulation index was calculated using the TF estimation (Welch method) and classified according to the original Tiecks' model. ⋯ The result showed a significant relationship between ARI and Mx when using either ABP (r=-0.38, P<0.001) or CPP (r=-0.404, P<0.001) as input. Transfer function phase and coherence_a were significantly correlated with ARI_a and ARI_c (P<0.05). Only ARI_a, ARI_c, Mx_a, Mx_c, and phase_c were significantly correlated with patients' outcome, with Mx_c showing the strongest association.
-
J. Cereb. Blood Flow Metab. · Feb 2015
ReviewLactate transport and signaling in the brain: potential therapeutic targets and roles in body-brain interaction.
Lactate acts as a 'buffer' between glycolysis and oxidative metabolism. In addition to being exchanged as a fuel by the monocarboxylate transporters (MCTs) between cells and tissues with different glycolytic and oxidative rates, lactate may be a 'volume transmitter' of brain signals. According to some, lactate is a preferred fuel for brain metabolism. ⋯ The localization and function of HCAR1 and the three MCTs (MCT1, MCT2, and MCT4) expressed in brain constitute the focus of this review. They are possible targets for new therapeutic drugs and interventions. The author proposes that lactate actions in the brain through MCTs and the lactate receptor underlie part of the favorable effects on the brain resulting from physical exercise.
-
J. Cereb. Blood Flow Metab. · Feb 2015
MEK1/2 inhibitor U0126 but not endothelin receptor antagonist clazosentan reduces upregulation of cerebrovascular contractile receptors and delayed cerebral ischemia, and improves outcome after subarachnoid hemorrhage in rats.
Cerebral vasospasm and late cerebral ischemia (LCI) remain leading causes of mortality in patients experiencing a subarachnoid hemorrhage (SAH). This occurs typically 3 to 4 days after the initial bleeding and peaks at 5 to 7 days. The underlying pathophysiology is still poorly understood. ⋯ Although clazosentan directly inhibits the contractile responses in vivo to ET-1, it did not prevent SAH-induced upregulation of ET receptors in cerebral arteries and did not show a beneficial effect on neurologic outcome. U0126 had no vasomotor effect by itself but counteracts SAH-induced receptor upregulation in cerebral arteries and improved outcome after SAH. We suggest that because SAH induces elevated expression of several contractile receptor subtypes, it is not sufficient to block only one of these (ET receptors) but inhibition of transcriptional MEK1/2-mediated upregulation of several contractile receptors may be a viable way towards alleviating LCI.