Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
-
J. Cereb. Blood Flow Metab. · Feb 2015
ReviewLactate transport and signaling in the brain: potential therapeutic targets and roles in body-brain interaction.
Lactate acts as a 'buffer' between glycolysis and oxidative metabolism. In addition to being exchanged as a fuel by the monocarboxylate transporters (MCTs) between cells and tissues with different glycolytic and oxidative rates, lactate may be a 'volume transmitter' of brain signals. According to some, lactate is a preferred fuel for brain metabolism. ⋯ The localization and function of HCAR1 and the three MCTs (MCT1, MCT2, and MCT4) expressed in brain constitute the focus of this review. They are possible targets for new therapeutic drugs and interventions. The author proposes that lactate actions in the brain through MCTs and the lactate receptor underlie part of the favorable effects on the brain resulting from physical exercise.
-
J. Cereb. Blood Flow Metab. · Jan 2015
Glycolysis and the pentose phosphate pathway after human traumatic brain injury: microdialysis studies using 1,2-(13)C2 glucose.
Increased 'anaerobic' glucose metabolism is observed after traumatic brain injury (TBI) attributed to increased glycolysis. An alternative route is the pentose phosphate pathway (PPP), which generates putatively protective and reparative molecules. To compare pathways we employed microdialysis to perfuse 1,2-(13)C2 glucose into the brains of 15 TBI patients and macroscopically normal brain in six patients undergoing surgery for benign tumors, and to simultaneously collect products for nuclear magnetic resonance (NMR) analysis. (13)C enrichment for glycolytic 2,3-(13)C2 lactate was the median 5.4% (interquartile range (IQR) 4.6-7.5%) in TBI brain and 4.2% (2.4-4.4%) in 'normal' brain (P<0.01). ⋯ There was proportionally greater PPP-derived lactate production with decreasing PbtO2. The study raises questions about the roles of the PPP and glycolysis after TBI, and whether they can be manipulated to achieve a better outcome. This study is the first direct comparison of glycolysis and PPP in human brain.
-
J. Cereb. Blood Flow Metab. · Jan 2015
Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients.
The differentiation of the vegetative or unresponsive wakefulness syndrome (VS/UWS) from the minimally conscious state (MCS) is an important clinical issue. The cerebral metabolic rate of glucose (CMRglc) declines when consciousness is lost, and may reveal the residual cognitive function of these patients. However, no quantitative comparisons of cerebral glucose metabolism in VS/UWS and MCS have yet been reported. ⋯ Ordinal logistic regression predicted that patients are likely to emerge into MCS at CMRglc above 45% of normal. Receiver-operating characteristics showed that patients in MCS and VS/UWS can be differentiated with 82% accuracy, based on cortical metabolism. Together these results reveal a significant correlation between whole-brain energy metabolism and level of consciousness, suggesting that quantitative values of CMRglc reveal consciousness in severely brain-injured patients.
-
J. Cereb. Blood Flow Metab. · Dec 2014
Clinical TrialOptimization and reliability of multiple postlabeling delay pseudo-continuous arterial spin labeling during rest and stimulus-induced functional task activation.
Arterial spin labeling (ASL) sequences that incorporate multiple postlabeling delay (PLD) times allow estimation of when arterial blood signal arrives within a region of interest. Sequences that account for such variability may improve the reliability of ASL and therefore make the technique well suited for future clinical and experimental investigations of cerebral perfusion. This study assessed the within- and between-session reproducibility of an optimized pseudo-continuous ASL (pCASL) functional magnetic resonance imaging (FMRI) sequence that incorporates multiple postlabeling delays (multi-PLD pCASL). ⋯ We show good test-retest reliability, with strong consistency across subjects and sessions during rest (inter-session within-subject coefficient of variation: gray matter (GM) CBF=6.44%; GM AAT=2.20%). We also report high sensitivity and reproducibility during the functional task, where we show robust task-related decreases in AAT corresponding with regions of increased CBF. Importantly, these results give insight into optimal PLD selection for future investigations using single-PLD ASL to image different brain regions, and highlight the necessity of multi-PLD ASL when imaging perfusion in the whole brain.
-
J. Cereb. Blood Flow Metab. · Dec 2014
ReviewMolecular regulation of cell fate in cerebral ischemia: role of the inflammasome and connected pathways.
Analogous to Toll-like receptors, NOD-like receptors represent a class of pattern recognition receptors, which are cytosolic and constitute part of different inflammasomes. These large protein complexes are activated not only by different pathogens, but also by sterile inflammation or by specific metabolic conditions. ⋯ Increasing data also support an important role in different central nervous diseases such as stroke. Thus, the current knowledge of the functional role of this intracellular 'master switch' of inflammation is discussed with a focus on its role in ischemic stroke, neurodegeneration, and also with regard to the recent data which argues for a relevant role in other organs or biologic systems which influence stroke incidence or prognosis.