Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
-
J. Cereb. Blood Flow Metab. · May 2011
Randomized Controlled TrialPseudocontinuous arterial spin labeling reveals dissociable effects of morphine and alcohol on regional cerebral blood flow.
We have examined sensitivity and specificity of pseudocontinuous arterial spin labeling (PCASL) to detect global and regional changes in cerebral blood flow (CBF) in response to two different psychoactive drugs. We tested alcohol and morphine in a placebo-controlled, double-blind randomized study in 12 healthy young men. Drugs were administered intravenously. ⋯ Conjunction analysis revealed overlapping effects of morphine and alcohol on absolute CBF in the left anterior cingulate, right hippocampus, right insula, and left primary sensorimotor areas. Effects of morphine and alcohol on relative CBF (obtained from z-normalization of absolute CBF maps) were significantly different in the left putamen, left frontoparietal network, cerebellum, and the brainstem. Corroborating previous PET results, our findings suggest that PCASL is a promising tool for central nervous system drug research.
-
J. Cereb. Blood Flow Metab. · Apr 2011
Combinational therapy using hypothermia and the immunophilin ligand FK506 to target altered pial arteriolar reactivity, axonal damage, and blood-brain barrier dysfunction after traumatic brain injury in rat.
This study evaluated the utility of combinational therapy, coupling delayed posttraumatic hypothermia with delayed FK506 administration, on altered cerebral vascular reactivity, axonal injury, and blood-brain barrier (BBB) disruption seen following traumatic brain injury (TBI). Animals were injured, subjected to various combinations of hypothermic/FK506 intervention, and equipped with cranial windows to assess pial vascular reactivity to acetylcholine. Animals were then processed with antibodies to the amyloid precursor protein and immunoglobulin G to assess axonal injury and BBB disruption, respectively. ⋯ However, TBI with combinational therapy achieved significantly enhanced vascular and axonal protection, with no BBB protection. This study shows the benefits of combinational therapy, using posttraumatic hypothermia with FK506 to attenuate important features of TBI. This suggests that hypothermia not only protects but also extends the therapeutic window for improved FK506 efficacy.
-
J. Cereb. Blood Flow Metab. · Feb 2011
Outcome-related metabolomic patterns from 1H/31P NMR after mild hypothermia treatments of oxygen-glucose deprivation in a neonatal brain slice model of asphyxia.
Human clinical trials using 72 hours of mild hypothermia (32°C-34°C) after neonatal asphyxia have found substantially improved neurologic outcomes. As temperature changes differently modulate numerous metabolite fluxes and concentrations, we hypothesized that (1)H/(31)P nuclear magnetic resonance (NMR) spectroscopy of intracellular metabolites can distinguish different insults, treatments, and recovery stages. Three groups of superfused neonatal rat brain slices underwent 45 minutes oxygen-glucose deprivation (OGD) and then were: treated for 3 hours with mild hypothermia (32°C) that began with OGD, or similarly treated with hypothermia after a 15-minute delay, or not treated (normothermic control group, 37°C). ⋯ Cell death was decreased by immediate hypothermia, but was equally substantially greater with normothermia and delayed hypothermia. Potentially important biomarkers in the (1)H spectra included PCr-(1)H (phosphocreatine in the (1)H spectrum), ATP-(1)H (adenosine triphosphate in the (1)H spectrum), and ADP-(1)H (adenosine diphosphate in the (1)H spectrum). The findings suggest a potential role for metabolomic monitoring during therapeutic hypothermia.
-
J. Cereb. Blood Flow Metab. · Feb 2011
The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production.
The role of neuroinflammation is increasingly being recognised in a diverse range of cerebral pathologies, including traumatic brain injury (TBI). We used cerebral microdialysis and paired arterial and jugular bulb plasma sampling to characterise the production of 42 cytokines after severe TBI in 12 patients over 5 days. We compared two microdialysis perfusates in six patients: central nervous system perfusion fluid and 3.5% human albumin solution (HAS); 3.5% HAS has a superior fluid recovery (95.8 versus 83.3%), a superior relative recovery in 18 of 42 cytokines (versus 8 of 42), and a qualitatively superior recovery profile. ⋯ Brain extracellular fluid concentrations were significantly higher than plasma concentrations for 19 cytokines: basic fibroblast growth factor (FGF2), G-CSF, IL1α, IL1β, IL1ra, IL3, IL6, IL8, IL10, IL12p40, IL12p70, IP10, monocyte chemotactic protein (MCP)1, MCP3, MIP1α, MIP1β, PDGF-AA, transforming growth factor (TGF)α and vascular endothelial growth factor. No clear arterio-jugular venous gradients were apparent. These data provide evidence for the cerebral production of these cytokines and show a stereotyped temporal pattern after TBI.