Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
-
J. Cereb. Blood Flow Metab. · Jan 2016
ReviewCirculating biologic markers of endothelial dysfunction in cerebral small vessel disease: a review.
The term cerebral small vessel disease (SVD) refers to a group of pathologic processes with various etiologies that affect small arteries, arterioles, venules, and capillaries of the brain. Magnetic resonance imaging (MRI) correlates of SVD are lacunes, recent small subcortical infarcts, white-matter hyperintensities, enlarged perivascular spaces, microbleeds, and brain atrophy. ⋯ These molecules include products of endothelial cells that change when the endothelium is activated, as well as molecules that reflect endothelial damage and repair. This review examines the main molecular factors involved in both endothelial function and dysfunction, and the evidence linking endothelial dysfunction with cerebral SVD, and gives an overview of clinical studies that have investigated the possible association between endothelial circulating biomarkers and SVD-related brain changes.
-
J. Cereb. Blood Flow Metab. · Jan 2016
ReviewLongitudinal change of small-vessel disease-related brain abnormalities.
Knowledge about the longitudinal change of cerebral small-vessel disease–related magnetic resonance imaging abnormalities increases our pathophysiologic understanding of cerebral microangiopathy. The change of specific lesion types may also serve as secondary surrogate endpoint in clinical trials. A surrogate endpoint needs to progress fast enough to allow monitoring of treatment effects within a reasonable time period, and change of the brain abnormality needs to be correlated with clinical change. ⋯ Nonetheless if the expected change in cognitive performance resulting from treatment effects on lesion progression is used as outcome, the sample size needed to show small to moderate treatment effects becomes very large. Lacunes may also fulfill the prerequisites of a surrogate marker, but in the general population the incidence of lacunes over short observational periods is small. For other small-vessel disease–related brain abnormalities including microbleeds and microstructural changes in normal-appearing white matter longitudinal change and correlations with clinical decline is not yet fully determined.
-
J. Cereb. Blood Flow Metab. · Dec 2015
The cumulative influence of hyperoxia and hypercapnia on blood oxygenation and R*₂.
Cerebrovascular reactivity (CVR)-weighted blood-oxygenation-level-dependent magnetic resonance imaging (BOLD-MRI) experiments are frequently used in conjunction with hyperoxia. Owing to complex interactions between hyperoxia and hypercapnia, quantitative effects of these gas mixtures on BOLD responses, blood and tissue R2*, and blood oxygenation are incompletely understood. Here we performed BOLD imaging (3 T; TE/TR=35/2,000 ms; spatial resolution=3 × 3 × 3.5 mm(3)) in healthy volunteers (n=12; age=29±4.1 years) breathing (i) room air (RA), (ii) normocapnic-hyperoxia (95% O2/5% N2, HO), (iii) hypercapnic-normoxia (5% CO2/21% O2/74% N2, HC-NO), and (iv) hypercapnic-hyperoxia (5% CO2/95% O2, HC-HO). ⋯ In the cortex, fractional BOLD changes (stimulus/baseline) were HO/RA=0.011±0.007; HC-NO/RA=0.014±0.004; HC-HO/HO=0.020±0.008; and HC-HO/RA=0.035±0.010; for the measured basal venous oxygenation level of 0.632, this led to venous blood oxygenation levels of 0.660 (HO), 0.665 (HC-NO), and 0.712 (HC-HO). Interleaving a HC-HO stimulus with HO baseline provided a smaller but significantly elevated BOLD response compared with a HC-NO stimulus. Results provide an outline for how blood oxygenation differs for several gas stimuli and provides quantitative information on how hypercapnic BOLD CVR and R2* are altered during hyperoxia.
-
J. Cereb. Blood Flow Metab. · Nov 2015
Observational StudyNoninvasive cerebral oximetry during endovascular therapy for acute ischemic stroke: an observational study.
Implementing endovascular stroke care often impedes neurologic assessment in patients who need sedation or general anesthesia. Cerebral near-infrared spectroscopy (NIRS) may help physicians monitor cerebral tissue viability, but data in hyperacute stroke patients receiving endovascular treatment are sparse. In this observational study, the NIRS index regional oxygen saturation (rSO2) was measured noninvasively before, during, and after endovascular therapy via bilateral forehead NIRS optodes. ⋯ After the intervention, higher rSO2 variability predicted poor outcome (modified Rankin scale > 3, P=0.032). Our findings suggest that bi-channel rSO2-NIRS has potential for guiding neuroanesthesia and predicting outcome. To better monitor local revascularization, an improved stroke-specific set-up in future studies is necessary.
-
J. Cereb. Blood Flow Metab. · Nov 2015
Selective neuronal vulnerability of human hippocampal CA1 neurons: lesion evolution, temporal course, and pattern of hippocampal damage in diffusion-weighted MR imaging.
The CA1 (cornu ammonis) region of hippocampus is selectively vulnerable to a variety of metabolic and cytotoxic insults, which is mirrored in a delayed neuronal death of CA1 neurons. The basis and mechanisms of this regional susceptibility of CA1 neurons are poorly understood, and the correlates in human diseases affecting the hippocampus are not clear. Adopting a translational approach, the lesion evolution, temporal course, pattern of diffusion changes, and damage in hippocampal CA1 in acute neurologic disorders were studied using high-resolution magnetic resonance imaging. ⋯ Hypoxic-ischemic insults led to a significant lower ADC suggesting that the ischemic insult results in a stronger impairment of cellular metabolism. The evolution of diffusion changes show that CA1 diffusion lesions mirror the delayed time course of the pathophysiologic cascade typically observed in animal models. Studying the imaging correlates of hippocampal damage in humans provides valuable insight into the pathophysiology and neurobiology of the hippocampus.