Cellular and molecular neurobiology
-
Cell. Mol. Neurobiol. · Jul 2019
Neuroprotective Role of Selected Antioxidant Agents in Preventing Cisplatin-Induced Damage of Human Neurons In Vitro.
Chemotherapy-induced peripheral neuropathy (CIPN) is a side effect of platinum-based chemotherapy and decreases the quality of life of cancer patients. We compared neuroprotective properties of several agents using an in vitro model of terminally differentiated human cells NT2-N derived from cell line NT2/D1. Sodium azide and an active metabolite of amifostine (WR1065) increase cell viability in simultaneous treatment with cisplatin. ⋯ The spectrum found in cisplatin-DNA samples is altered differently by the addition of either WR1065 or sodium azide. Importantly, a similar change in Pt edge spectra was noted in cells treated with cisplatin and WR1065. Therefore, amifostine should be reconsidered as a candidate for treatments that reduce or prevent CIPN.
-
Cell. Mol. Neurobiol. · Aug 2018
LncRNA ANRIL Expression and ANRIL Gene Polymorphisms Contribute to the Risk of Ischemic Stroke in the Chinese Han Population.
The aim of the present study was to explore the role of lncRNA ANRIL in the pathogenesis of ischemic stroke (IS) and coronary artery disease (CAD) and to determine the association between ANRIL variants and the genetic susceptibility of IS and CAD in the Chinese Han population. A genetic association study including 550 IS patients, 550 CAD patients, and 550 healthy controls was conducted. The expression levels of lncRNA ANRIL, CDKN2A, and CDKN2B were detected using qRT-PCR. ⋯ In addition, we found a decreased lncRNA ANRIL expression in IS patients who carried the GG genotype of rs1333049 compared with IS patients who carried the CC or CG genotype (P = 0.041). In summary, we found that IS patients had an increased lncRNA ANRIL expression and a decreased CDKN2A expression compared with the controls, which might play an impellent role in pathological processes of IS. The ANRIL variants rs2383207 and rs1333049 were significantly associated with the risk of IS among males but not females in the Chinese Han population.
-
Cell. Mol. Neurobiol. · Jul 2018
Toll-Like Receptor 4 Knockdown Attenuates Brain Damage and Neuroinflammation After Traumatic Brain Injury via Inhibiting Neuronal Autophagy and Astrocyte Activation.
Toll-like receptor 4 (TLR4) has been linked to various pathophysiological conditions, such as traumatic brain injury (TBI). It is reported that posttraumatic neuroinflammation is an essential event in the progression of brain injury after TBI. Recent evidences indicate that TLR4 mediates glial phagocytic activity and inflammatory cytokines production. ⋯ More importantly, an autophagy inducer, rapamycin pretreated, could partially abolish neuroprotective effects of TLR4 knockdown on TBI rats. Furthermore, TLR4 silencing markedly suppressed GFAP upregulation and improved cell hypertrophy to attenuate TBI-induced astrocyte activation. Taken together, these findings suggested that TLR4 knockdown ameliorated neuroinflammatory response and brain injury after TBI through suppressing autophagy induction and astrocyte activation.
-
Cell. Mol. Neurobiol. · Apr 2018
PI3K/Akt Pathway is Required for Spinal Central Sensitization in Neuropathic Pain.
Phosphatidylinositol-3-kinase (PI3K) has been identified in the expression of central sensitization after noxious inflammatory stimuli. However, its contribution in neuropathic pain remains to be determined. Here we address the role of PI3K signaling in central sensitization in a model of neuropathic pain, and propose a novel potential drug target for neuropathic pain. ⋯ CCI also facilitated miniature excitatory postsynaptic potential of dorsal horn substantia gelatinosa neurons, increased phosphorylation of glutamate receptor subunit GluA1 and synapsin at the synapse, and induced mechanic allodynia. Wortmannin reversed biochemical, electrical, and behavioral changes in CCI rats. This study is the first to show PI3K/Akt signaling is required for spinal central sensitization in the CCI neuropathic pain model.
-
Cell. Mol. Neurobiol. · Oct 2017
Rapamycin Protects Sepsis-Induced Cognitive Impairment in Mouse Hippocampus by Enhancing Autophagy.
The purpose of this study is to test the hypothesis that the mammalian target of rapamycin (mTOR) signaling pathway might mediate neuroprotection in a mouse model of septic encephalopathy and also to identify the role of autophagy. Mice were subjected to cecal ligation and puncture (CLP) or a sham operation, and all 50 mice were randomly assigned to five groups: sham, CLP+ saline, CLP+ rapamycin (1, 5, 10 mg/kg) groups. Two weeks after the operation, Morris water maze was conducted for behavioral test; Nissl staining was used for observing glia infiltration; immunohistochemical staining and biochemical measures in hippocampi were performed to detect mTOR targets and autophagy indicators. ⋯ Inhibition of mTOR by rapamycin rescued cognitive deficits caused by sepsis (p < 0.05). Rapamycin did not affect total mTOR targets, while phosphorylated mTOR targets (p-mTOR-Ser2448, p-p70S6k-Thr389, p-AKT-S473) decreased (p < 0.05) and autophagy indicators (LC3-II, Atg5, Atg7) were increased, and P62 was decreased in rapamycin-treated CLP mice compared with the untreated (p < 0.05) in hippocampus. Rapamycin improves learning after sepsis through enhancing autophagy and may be a potentially effective therapeutic agent for the treatment of sepsis-induced cognitive impairment.