Cellular and molecular neurobiology
-
Cell. Mol. Neurobiol. · Oct 2016
The Central Analgesic Mechanism of YM-58483 in Attenuating Neuropathic Pain in Rats.
Calcium channel antagonists are commonly used to treat neuropathic pain. Their analgesic effects rely on inhibiting long-term potentiation, and neurotransmitters release in the spinal cord. Store-operated Ca(2+)channels (SOCCs) are highly Ca(2+)-selective cation channels broadly expressed in non-excitable cells and some excitable cells. ⋯ Western blot showed that YM-58483 could decrease the levels of P-ERK and P-CREB (n = 10, #P < 0.05), without affecting the expression of CD11b and GFAP (n = 10, #P > 0.05). YM-58483 also inhibited the release of spinal cord IL-1β, TNF-α, and PGE2, compared with control + vehicle (n = 5, #P < 0.001). The analgesic mechanism of YM-58483 may be via inhibiting central ERK/CREB signaling in the neurons and decreasing central IL-1β, TNF-α, and PGE2 release to reduce neuronal excitability in the spinal dorsal horn of the SNL rats.
-
Cell. Mol. Neurobiol. · Aug 2016
Intrathecal Administration of Tempol Reduces Chronic Constriction Injury-Induced Neuropathic Pain in Rats by Increasing SOD Activity and Inhibiting NGF Expression.
We investigate the antinociceptive effect of intrathecal and intraperitoneal tempol administration in a rat model of chronic constriction injury (CCI)-induced neuropathic pain and explore the underlying antinociceptive mechanisms of tempol. Rats were randomly assigned to four groups (n = 8 per group): sham group, CCI group, Tem1 group (intrathecal injection of tempol), and Tem2 group (intraperitoneal injection of tempol). Neuropathic pain was induced by CCI of the sciatic nerve. ⋯ Furthermore, intrathecal, but not intraperitoneal, injection of tempol further downregulated the expression of NGF in the spinal cord following CCI, and this effect was blocked by p38MAPK inhibitor. Intrathecal injection of tempol produces antinociceptive effects and reduces CCI-induced structural damage in the spinal cord by increasing SOD activities and downregulating the expression of NGF via the p38MAPK pathway. Intraperitoneal administration of tempol does not exhibit antinociceptive effects.
-
Cell. Mol. Neurobiol. · Jan 2016
Ligustilide Ameliorates Inflammatory Pain and Inhibits TLR4 Upregulation in Spinal Astrocytes Following Complete Freund's Adjuvant Peripheral Injection.
Ligustilide is a major component of Radix Angelica Sinensis and reported to have anti-inflammatory and anti-nociceptive effects. Toll-like receptor 4 (TLR4) has been shown to be expressed in the spinal cord and be involved in inflammatory pain and neuropathic pain. Whether ligustilide can inhibit spinal TLR4 expression in inflammatory pain is still unknown. ⋯ Immunofluorescence double staining showed that TLR4 was predominantly expressed in spinal astrocytes. In primary cultured astrocytes, ligustilide dose-dependently reduced lipopolysaccharide-induced upregulation of TLR4 mRNA expression. These data indicate that ligustilide treatment reduces TLR4 expression in spinal astrocytes and is an effective therapy for inflammatory pain.
-
Cell. Mol. Neurobiol. · Nov 2015
Electroacupuncture Pretreatment Attenuates Cerebral Ischemic Injury via Notch Pathway-Mediated Up-Regulation of Hypoxia Inducible Factor-1α in Rats.
We have reported electroacupuncture (EA) pretreatment induced the tolerance against focal cerebral ischemia through activation of canonical Notch pathway. However, the underlying mechanisms have not been fully understood. Evidences suggest that up-regulation of hypoxia inducible factor-1α (HIF-1α) contributes to neuroprotection against ischemia which could interact with Notch signaling pathway in this process. ⋯ Furthermore, intraventricular injection with MW167 efficiently suppressed both up-regulation of NICD and HIF-1α after reperfusion. However, administration with 2ME2 could only decrease the expression of HIF-1α in the penumbra. In conclusion, EA pretreatment exerts neuroprotection against ischemic injury through Notch pathway-mediated up-regulation of HIF-1α.