Journal of cellular biochemistry
-
We observed that treatment of prostate cancer cells for 24 h with magnolol, a phenolic component extracted from the root and stem bark of the oriental herb Magnolia officinalis, induced apoptotic cell death in a dose- and time-dependent manner. A sustained inhibition of the major survival signal, Akt, occurred in magnolol-treated cells. Treatment of PC-3 cells with an apoptosis-inducing concentration of magnolol (60 microM) resulted in a rapid decrease in the level of phosphorylated Akt leading to inhibition of its kinase activity. ⋯ Interestingly, at similar concentrations (60 microM), magnolol treatment did not affect the viability of normal human prostate epithelial cell (PrEC) line. We also observed that apoptotic cell death by magnolol was associated with significant inhibition of pEGFR, pPI3K, and pAkt. These results suggest that one of the mechanisms of the apoptotic activity of magnolol involves its effect on epidermal growth factor receptor (EGFR)-mediated signaling transduction pathways.
-
Gap junctions form channels that allow exchange of materials between cells and are composed of transmembrane protein subunits called connexins. While connexins are believed to mediate cellular signaling by permitting intercellular communication to occur, there is also increasing evidence that suggest connexins may mediate growth control via a junction-independent mechanism. Connexin43 (Cx43) is the most abundant gap junction protein found in astrocytes, and gliomas exhibit reduced Cx43 expression. ⋯ Gliomas expressing high levels of Cx43 preferentially upregulated CCN3 which resulted in reduced growth rate. CCN3 could also be observed in Cx43 gap junction plaques in confluent C6-Cx43H culture at the stationary phase of their growth. Our results suggest that the dissimilar growth characteristics between high and low Cx43 expressors may be due to differential regulation of CCN3 by varying levels of Cx43.
-
Lymphangioleiomyomatosis (LAM), a rare lung disease, is characterized by the progressive proliferation, migration, and differentiation of smooth muscle (SM)-like LAM cells, which lead to the cystic destruction of the lung parenchyma, obstruction of airways and lymphatics, and loss of pulmonary function. LAM is a disease predominantly affecting women and is exacerbated by pregnancy; only a lung transplant can save the life of a patient. ⋯ The recent discoveries that TSC1/TSC2 complex functions as an integrator of signaling networks regulated by growth factors, insulin, nutrients, and energy heightened the interest regarding this rare disease because the elucidation of disease-relevant mechanisms of LAM will promote a better understanding of other metabolic diseases such as diabetes, cancer, and cardiovascular diseases. In this review, we will summarize the progress made in our understanding of TSC1/TSC2 cellular signaling and the molecular mechanisms of LAM; we will also highlight some of the lesser explored directions and challenges in LAM research.
-
Cell therapy with bone marrow-derived mesenchymal stem cells (MSCs) has been shown to have great promises in cardiac repair after myocardial infarction. However, poor viability of transplanted MSCs in the infracted heart has limited the therapeutic efficacy. Our previous studies have shown in vitro that rat MSCs undergo caspase-dependent apoptosis in response to hypoxia and serum deprivation (Hypoxia/SD). ⋯ The phosphorylations of Akt/GSK3 beta and ERK1/2 stimulated by lovastatin were detected. The activation of ERK1/2 was inhibited by a PI3K inhibitor, LY294002, but U0126, a ERK1/2 inhibitor did not inhibit phosphorylation of Akt and GSK3 beta. These data demonstrate that lovastatin protects MSCs from Hypoxia/SD-induced apoptosis via PI3K/Akt and MEK/ERK1/2 pathways, suggesting that it may prove a useful therapeutic adjunct for transplanting MSCs into damaged heart after myocardial infarction.
-
Serine-threonine protein kinase glycogen synthase kinase (GSK)-3 is involved in regulation of many cell functions, but its role in regulating liver regeneration is unknown. Here we investigated the effects of GSK-3beta inhibition on liver regeneration after partial hepatectomy in the rat. The potent and selective GSK-3beta inhibitor SB216763 (0.6 mg/kg intravenously) or vehicle (10% dimethyl sulfoxide) was administered 30 min before 70% partial hepatectomy. ⋯ Moreover, the injection of SB216763 impaired the proliferation cell nuclear antigen (PCNA) index and increased the apoptosis of liver compared to the vehicle. GSK-3beta plays an important role in rat liver regeneration. We conclude it may partially result from the inhibition of the NF-kappaB pathway and enhancement of p21 (WAF1/Cip1) expression.