Journal of cellular biochemistry
-
Sepsis is a syndrome of life-threatening multiorgan dysfunction caused by host response dysregulation to infection. Ulinastatin (UTI), a serine protease inhibitor, possesses anti-inflammatory properties and has been suggested to modulate lipopolysaccharide-induced sepsis. However, little is known about the mechanism underlying its effects on sepsis. ⋯ Moreover, UTI also decreased nitrotyrosine and 4-hydroxynonenal, activated caspase-3, and activated poly (ADP-ribose) polymerase (PARP) levels and inhibited the mitogen-activated protein kinase pathway activation in liver tissues. Our results indicated that UTI could inhibit CLP-induced liver injury by suppressing inflammation and oxidation. Our results indicated that UTI may serve as a potential therapeutic agent for sepsis.
-
The deficiency of the enzyme glutaryl-CoA dehydrogenase, known as glutaric acidemia type I (GA-I), leads to the accumulation of glutaric acid (GA) and glutarilcarnitine (C5DC) in the tissues and body fluids, unleashing important neurotoxic effects. l-carnitine (l-car) is recommended for the treatment of GA-I, aiming to induce the excretion of toxic metabolites. l-car has also demonstrated an important role as antioxidant and anti-inflammatory in some neurometabolic diseases. This study evaluated GA-I patients at diagnosis moment and treated the oxidative damage to lipids, proteins, and the inflammatory profile, as well as in vivo and in vitro DNA damage, reactive nitrogen species (RNS), and antioxidant capacity, verifying if the actual treatment with l-car (100 mg kg-1 day-1 ) is able to protect the organism against these processes. Significant increases of GA and C5DC were observed in GA-I patients. ⋯ GA, in three different concentrations, significantly induced DNA damage in vitro, and the l-car was able to prevent this damage. Significant increases of pro-inflammatory cytokines IL-6, IL-8, GM-CSF, and TNF-α were shown in patients. Thus, the beneficial effects of l-car presented in the treatment of GA-I are due not only by increasing the excretion of accumulated toxic metabolites, but also by preventing oxidative damage.
-
Hypoxia induces epithelial-mesenchymal transition (EMT) in tumorigenesis. A-kinase anchor protein 4 (AKAP4) is a member of AKAPs family and plays a critical role in tumorigenesis. However, the biological role of AKAP4 in gastric cancer remains unknown. ⋯ Mechanistically, knockdown of AKAP4 prevented the activation of the Wnt/β-catenin pathway in gastric cancer cells under hypoxia condition. These findings indicate that knockdown of AKAP4 inhibits hypoxia-induced EMT in human gastric cancer cells, at least in part, via inactivation of the Wnt/β-catenin signaling pathway. It is, therefore, AKAP4 may be a potential therapeutic target for the treatment of gastric cancer.
-
Retracted Publication
Baicalin prevents tumor necrosis factor-α-induced apoptosis and dysfunction of pancreatic β-cell line Min6 via upregulation of miR-205.
Baicalin (BAI), one major flavonoid from Scutellaria baicalensis, possesses anticancer and anti-inflammatory properties. However, the effect of BAI on diabetes mellitus has not been investigated. This study explored the antidiabetic effect of BAI on pancreatic β-cell line Min6. ⋯ Besides, the Min6 cell-protective effect of BAI was PI3K/AKT pathway and NF-κB pathway dependent. BAI activated the PI3K/AKT pathway and inhibited the NF-κB pathway by regulating miR-205. In conclusion, BAI protected Min6 cells from TNF-α-induced injury by upregulating miR-205, which acts, at least in part, via activation of the PI3K/AKT pathway and inactivation of the NF-κB pathway.
-
It is known that anterior cruciate ligament (ACL) of the knee joint is prone to injuries with poor healing potential. The healing capacity of a tissue-like ACL is dependent on its structural components and the properties of the stem cells (SCs). Therefore, this study aimed to characterize the structure of ACL tissue and the properties of the SCs derived from the tissue components. ⋯ This study shows that ACL consists of sheath and core tissues, which contain sheath and core SCs with distinctive biological properties. These findings highlight the need for use of both sheath and core SCs to promote the repair of the complex structure of injured ACL.