Magnetic resonance imaging
-
Comparative Study
Three-dimensional phase contrast MR cerebral venography with zero filling interpolation in the slice encoding direction.
The purpose of this study was to evaluate the magnetic resonance (MR) cerebral venography findings of a three-dimensional phase contrast MR sequence with zero filling interpolation of the data in the slice encoding direction. Fifty volunteers were enrolled in the study. Images were obtained on a 1.5 MR imaging system with acquisition time of 12 min. ⋯ Score of the superior sagittal sinus, the straight sinus, the confluence of the superior sinus group, the right transverse and sigmoid sinuses, the internal veins, and the vein of Galen was excellent. The score of the left transverse and sigmoid sinuses was good. In conclusion, when using zero filling interpolation of the data in a three-dimensional phase contrast MR cerebral venography sequence, the superior group of dural venous sinuses and main major deep veins are demonstrated with good conspicuity.
-
The purpose of this paper is to describe the magnetic resonance imaging (MR) features of placenta accreta and percreta. We retrospectively reviewed MRI findings in four cases of placenta accreta/percreta to determine features which assist in identifying the presence and extent of placental implantation abnormality. All patients had ultrasound (US) examinations. ⋯ US correlation was available in all four cases. Gray scale US did not demonstrate placental invasion in any of the four cases of placenta accreta/percreta, however, in two of three cases in which color Doppler was performed, there was flow at the uterine margin suspicious for implantation abnormality. In conclusion, MRI is useful for identifying the presence and extent of placenta accreta/percreta.
-
The objective of this research was two-fold: First, to describe the normal and abnormal MR appearances of the duodenum using combined Half-Fourier Acquisition Single Shot RARE (HASTE) and gadolinium-enhanced standard and fat suppressed spoiled gradient echo (SGE) sequences. The second objective was to assess the ability of these combined sequences to detect and characterize duodenal diseases. MR examinations were performed on fifty consecutive patients with no clinical history of duodenal diseases, who were 1) imaged with HASTE and gadolinium-enhanced standard and fat suppressed SGE sequences and 2) referred to MR examination for reasons other than duodenal diseases, and were reviewed retrospectively to determine the normal MR appearances of the duodenum. ⋯ Bowel inflammation was best shown on gadolinium-enhanced fat suppressed SGE images. HASTE and gadolinium-enhanced fat suppressed SGE sequences are complementary techniques for the demonstration of normal and abnormal duodenum. The combined use of both sequences allows evaluation of different aspects of bowel diseases; abnormalities of position, lumen, and contents are well shown on HASTE, while inflammation is best shown on gadolinium enhanced fat suppressed SGE, and wall thickening and masses are best evaluated with the combined use of both techniques.
-
This study evaluates a combined protocol consisting of breath hold immediate post gadolinium 3-D gradient echo MR angiography and blood pool phase gadolinium-enhanced breath hold 2-D fat-suppressed spoiled gradient echo (SGE) sequences in the examination of diseases of the abdominal aorta and iliac vessels. Thirty-two patients with suspected disease of the abdominal aorta, major aortic branches, or iliac vessels underwent MR angiographic study from January 1996 to January 1997. Examinations were performed on a 1.5 T MR imager using 2-D axial SGE, coronal 3-D fast imaging in steady state precession (3-D FISP) following bolus administration of 40 mL of gadolinium, and axial and coronal blood pool phase gadolinium-enhanced fat-suppressed SGE. ⋯ Targeted MIP or MPR reconstruction were important for assessing stenoses of medium sized vessels such as renal arteries and branches of the iliac arteries, and for identifying accessory arteries. The combination of immediate post gadolinium 3-D FISP and blood pool phase gadolinium-enhanced fat-suppressed SGE is useful in the evaluation of the abdominal aorta, major aortic branches and iliac vessels. Immediate post gadolinium 3-D FISP images provides diagnostically useful information regarding vessel luminal contour, while blood pool phase gadolinium-enhanced fat-suppressed SGE provides ancillary information on the vessel wall and surrounding tissue.
-
In vivo relaxation times and relative spin densities of gray matter (GM) and white matter (WM) of rat spinal cord were measured. Inductively coupled implanted RF coil was used to improve the signal-to-noise ratio required for making these measurements. The estimated relaxation times (in milliseconds) are: T1(GM) = 1021+/-93, T2(GM) = 64+/-3.4, T1(WM) = 1089+/-126, and T2(WM) = 79+/-6.9. ⋯ The T1 values of GM and white matter are not statistically different. However, the differences in T2 values and spin densities of GM and WM are statistically significant. These in vivo measurements indicate that the observed contrast between GM and WM in spinal cord MR images mainly arises from the differences in the spin density.