Regulatory toxicology and pharmacology : RTP
-
Regul. Toxicol. Pharmacol. · Nov 2017
ReviewAssessing modified risk tobacco and nicotine products: Description of the scientific framework and assessment of a closed modular electronic cigarette.
Cigarette smoking causes many human diseases including cardiovascular disease, lung disease and cancer. Novel tobacco products with reduced yields of toxicants compared to cigarettes, such as tobacco-heating products, snus and electronic cigarettes, hold great potential for reducing the harms associated with tobacco use. In the UK several public health agencies have advocated a potential role for novel products in tobacco harm reduction. ⋯ The US FDA, has provided draft guidance outlining a framework to assess novel products as Modified Risk Tobacco Products (MRTP). Based on this, we now propose a framework comprising pre-clinical, clinical, and population studies to assess the risk profile of novel tobacco products. Additionally, the utility of this framework is assessed through the pre-clinical and part of the clinical comparison of a commercial e-cigarette (Vype ePen) with a scientific reference cigarette (3R4F) and the results of these studies suggest that ePen has the potential to be a reduced risk product.
-
Regul. Toxicol. Pharmacol. · Nov 2017
Comparative StudyComparative assessment of HPHC yields in the Tobacco Heating System THS2.2 and commercial cigarettes.
There has been a sustained effort in recent years to develop products with the potential to present less risk compared with continued smoking as an alternative for adult smokers who would otherwise continue to smoke cigarettes. During the non-clinical assessment phase of such products, the chemical composition and toxicity of their aerosols are frequently compared to the chemical composition and toxicity of the smoke from a standard research cigarette - the 3R4F reference cigarette. In the present study, it is demonstrated that results of these analytical comparisons are similar when considering commercially available cigarette products worldwide. A market mean reduction of about 90% is observed on average across a broad range of harmful and potentially harmful constituents (HPHC) measured in the aerosol of a candidate modified risk tobacco product, the Tobacco Heating System 2.2 (THS2.2), compared against the levels of HPHC of cigarettes representative of selected markets; this mean reduction is well in line with the reduction observed against 3R4F smoke constituents in previous studies.
-
Regul. Toxicol. Pharmacol. · Nov 2016
Comparative StudyEvaluation of the Tobacco Heating System 2.2. Part 3: Influence of the tobacco blend on the formation of harmful and potentially harmful constituents of the Tobacco Heating System 2.2 aerosol.
The Tobacco Heating System (THS2.2), which uses "heat-not-burn" technology, generates an aerosol from tobacco heated to a lower temperature than occurs when smoking a combustible cigarette. The concentrations of harmful and potentially harmful constituents (HPHCs) are significantly lower in THS2.2 mainstream aerosol than in smoke produced by combustible cigarettes. Different tobacco types and 43 tobacco blends were investigated to determine how the blend impacted the overall reductions of HPHCs in the THS2.2 mainstream aerosol. ⋯ Blends containing high proportions of nitrogen-rich tobacco, e.g., air-cured, and some Oriental tobaccos, produced higher acetamide, acrylamide, ammonia, and nitrogen oxide yields than did other blends. Most HPHCs were found to be released mainly through the distillation of HPHCs present in the tobacco plug or after being produced in simple thermal reactions. HPHC concentrations in the THS2.2 aerosol may therefore be further minimized by limiting the use of flue- and fire-cured tobaccos which may be contaminated by HPHCs during the curing process and carefully selecting nitrogen rich tobaccos with low concentrations of endogenous HPHCs for use in the tobacco plug blend.
-
Regul. Toxicol. Pharmacol. · Nov 2016
Comparative StudyEvaluation of the Tobacco Heating System 2.2. Part 2: Chemical composition, genotoxicity, cytotoxicity, and physical properties of the aerosol.
The chemical composition, in vitro genotoxicity, and cytotoxicity of the mainstream aerosol from the Tobacco Heating System 2.2 (THS2.2) were compared with those of the mainstream smoke from the 3R4F reference cigarette. In contrast to the 3R4F, the tobacco plug in the THS2.2 is not burnt. The low operating temperature of THS2.2 caused distinct shifts in the aerosol composition compared with 3R4F. ⋯ The chemical composition of the THS2.2 aerosol was also evaluated under extreme climatic and puffing conditions. When generating the THS2.2 aerosol under "desert" or "tropical" conditions, the generation of HPHCs was not significantly modified. When using puffing regimens that were more intense than the standard Health Canada Intense (HCI) machine-smoking conditions, the HPHC yields remained lower than when smoking the 3R4F reference cigarette with the HCI regimen.
-
Regul. Toxicol. Pharmacol. · Nov 2016
EditorialInvestigating a toxic risk (self-inflicted) the example of conventional and advanced studies of a novel Tobacco Heating System.
This special issue of Regulatory Toxicology and Pharmacology contains 9 scientific papers from Philip Morris International about the laboratory and 1 about early clinical investigation of a novel 'Tobacco Heating System'. The studies have employed conventional and a wide range of newer 'omics and bioinformatics techniques to seek and explore potential toxic actions of the inhalable vapour it generates. The methods of study and display of results employed are considered to be a valuable guide and model for wider application in other toxicological investigations because they are directed more to proximal causes of effects than to the cruder distal end points revealed by conventional, empirical procedures. As such they should be regarded as a paradigm for the applicability and accuracy of the testing and prediction of toxic risks.