Statistics in medicine
-
Statistics in medicine · Mar 2016
Bayesian meta-analytical methods to incorporate multiple surrogate endpoints in drug development process.
A number of meta-analytical methods have been proposed that aim to evaluate surrogate endpoints. Bivariate meta-analytical methods can be used to predict the treatment effect for the final outcome from the treatment effect estimate measured on the surrogate endpoint while taking into account the uncertainty around the effect estimate for the surrogate endpoint. In this paper, extensions to multivariate models are developed aiming to include multiple surrogate endpoints with the potential benefit of reducing the uncertainty when making predictions. ⋯ Two models are proposed, first, using an unstructured between-study covariance matrix by assuming the treatment effects on all outcomes are correlated and second, using a structured between-study covariance matrix by assuming treatment effects on some of the outcomes are conditionally independent. While the two models are developed for the summary data on a study level, the individual-level association is taken into account by the use of the Prentice's criteria (obtained from individual patient data) to inform the within study correlations in the models. The modelling techniques are investigated using an example in relapsing remitting multiple sclerosis where the disability worsening is the final outcome, while relapse rate and MRI lesions are potential surrogates to the disability progression.
-
Statistics in medicine · Nov 2015
Multiplicity in confirmatory clinical trials: a case study with discussion from a JSM panel.
An invited panel session was conducted in the 2012 Joint Statistical Meetings, San Diego, California, USA, to stimulate the discussion on multiplicity issues in confirmatory clinical trials for drug development. A total of 11 expert panel members were invited and 9 participated. ⋯ The Phase 3 development program for this new experimental treatment was based on a single randomized controlled trial alone. Each panelist was asked to clarify if he or she responded as if he or she were a pharmaceutical drug sponsor, an academic panelist or a health regulatory scientist.
-
Statistics in medicine · Nov 2015
Dynamic probability control limits for risk-adjusted Bernoulli CUSUM charts.
The risk-adjusted Bernoulli cumulative sum (CUSUM) chart developed by Steiner et al. (2000) is an increasingly popular tool for monitoring clinical and surgical performance. In practice, however, the use of a fixed control limit for the chart leads to a quite variable in-control average run length performance for patient populations with different risk score distributions. ⋯ Our simulation results demonstrate that our method does not rely on any information or assumptions about the patients' risk distributions. The use of DPCLs for risk-adjusted Bernoulli CUSUM charts allows each chart to be designed for the corresponding particular sequence of patients for a surgeon or hospital.
-
Statistics in medicine · Oct 2015
Modelling ventricular fibrillation coarseness during cardiopulmonary resuscitation by mixed effects stochastic differential equations.
For patients undergoing cardiopulmonary resuscitation (CPR) and being in a shockable rhythm, the coarseness of the electrocardiogram (ECG) signal is an indicator of the state of the patient. In the current work, we show how mixed effects stochastic differential equations (SDE) models, commonly used in pharmacokinetic and pharmacodynamic modelling, can be used to model the relationship between CPR quality measurements and ECG coarseness. This is a novel application of mixed effects SDE models to a setting quite different from previous applications of such models and where using such models nicely solves many of the challenges involved in analysing the available data.