Neurologic clinics
-
Neuronal injury following global cerebral ischemia continues to bea central problem of patients in the postresuscitation phase following cardiocirculatory arrest. In addition to measures focusing on rapid restoration of spontaneous circulation, the most effective treatment after cardiac arrest, as shown by large randomized trials,is the use of therapeutic mild hypothermia. ⋯ At present there is no specific neuroprotective treatment available. Promising animal experimental data concerning the use of thrombolytic agents during cardiopulmonary resuscitation have led to a large European multicenter trial (TROICA trial) that will provide its data in 2006.
-
It is difficult to predict precisely the final neurologic outcome from cardiac arrest and accompanying cerebral hypoxia. Although rare, several movement disorders may arise as a consequence of hypoxic injury, including myoclonus, dystonia, akinetic-rigid syndromes, tremor, and chorea. ⋯ Many outstanding questions remain, however. What factors promote susceptibility to the development of posthypoxic movement disorders? Why do patients who have similar clinical hypoxic insults develop markedly dis-similar movement disorders? Why are the basal ganglia especially vulnerable to cerebral hypoxia? Why do some movement disorders occur in delayed fashion and progress for years after the hypoxic insult? Is the pathogenesis of progressive posthypoxic movement disorders related to that of neurodegenerative diseases? What are the most effective medications for the various posthypoxic movement disorders? Is there a role for deep brain stimulation in the treatment of posthypoxic movement disorders? We anticipate that current and future research in the area of posthypoxic movement disorders will reveal answers to some of these important questions.